1 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
|
2 |
Miao L, Zhang Z, Ren Z, et al. Reactions Related to CAR-T Cell Therapy[J]. Front Immunol, 2021, 12:663201. doi: 10.3389/fimmu.2021.663201.
|
3 |
Li G, Quan Y, Che F, et al. B7-H3 in tumors: friend or foe for tumor immunity?[J]. Cancer Chemother Pharmacol, 2018,81(2):245-253.
|
4 |
Wang R, Ma Y, Zhan S, et al. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression[J]. Cell Death Dis, 2020, 11(1):55.doi: 10.1038/s41419-020-2252-3.
|
5 |
Li Y, Cai Q, Shen X, et al. Overexpression of B7-H3 is associated with poor prognosis in laryngeal cancer[J]. Front Oncol, 2021, 11:759528. doi: 10.3389/fonc.2021.759528.
|
6 |
Qin VM, D'Souza C, Neeson PJ, et al. Chimeric antigen receptor beyond CAR-T cells[J]. Cancers (Basel), 2021,13(3):404.
|
7 |
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy[J]. Nat Rev Clin Oncol, 2020,17(3):147-167.
|
8 |
Batlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies[J]. Nat Rev Clin Oncol, 2016,13(1):25-40.
|
9 |
Fan M, Li M, Gao L, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia[J]. J Hematol Oncol, 2017, 10(1):151.
|
10 |
Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy[J]. J Hematol Oncol, 2019, 12(1):62.
|
11 |
Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains[J]. Nat Rev Clin Oncol, 2021, 18(11):715-727.
|
12 |
Roselli E, Boucher JC, Li G, et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells[J]. J Immunother Cancer, 2021, 9(10):e003354. doi: 10.1136/jitc-2021-003354.
|
13 |
Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function[J]. Sci Signal, 2018, 11(544):eaat6753. doi: 10.1126/scisignal.aat6753.
|
14 |
Amatya C, Pegues MA, Lam N, et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule F7[J]. Mol Ther, 2021, 29(2):702-717.
|
15 |
Juillerat A, Tkach D, Busser BW, et al. Modulation of chimeric antigen receptor surface expression by a small molecule switch[J]. BMC Biotechnology, 2019, 19(1):44.
|
16 |
Yang L, Yin J, Wu J, et al. Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol[J]. Proc Natl Acad Sci U S A, 2021, 118(34):e2106612118. doi: 10.1073/pnas.2106612118.
|
17 |
Richman SA, Wang L-C, Khire UR, et al. Ligand-induced degradation of a CAR permits reversible remote control of CAR T cell activity in vitro and in vivo[J]. Mol Ther, 2020, 28(7):1600-1613.
|
18 |
Chapoval AI, Ni J, Lau JS, et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production[J]. Nat Immunol, 2001, 2(3):269-274.
|
19 |
Zhang G, Hou J, Shi J, et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum[J]. Immunology, 2008, 123(4):538-546.
|
20 |
Castriconi R, Dondero A, Augugliaro R, et al. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis[J]. Proc Natl Acad Sci U S A, 2004, 101(34):12640-12645.
|
21 |
Sun M, Richards S, Prasad DVR, et al. Characterization of mouse and human B7-H3 genes[J]. J Immunol, 2002, 168(12):6294-6297.
|
22 |
Zhang J, Liu L, Han S, et al. B7-H3 is related to tumor progression in ovarian cancer[J]. Oncol Rep, 2017, 38(4):2426-2434.
|
23 |
Ingebrigtsen VA, Boye K, Tekle C, et al. B7-H3 expression in colorectal cancer: Nuclear localization strongly predicts poor outcome in colon cancer[J]. Int J Cancer, 2012, 131(11):2528-2536.
|
24 |
Du H, Hirabayashi K, Ahn S, et al. Antitumor Responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells[J]. Cancer Cell, 2019, 35(2):221-237.e8.
|
25 |
Miyamoto T, Murakami R, Hamanishi J, et al. B7-H3 suppresses antitumor immunity via the CCL2-CCR2-M2 macrophage axis and contributes to ovarian cancer progression[J]. Cancer Immunol Res, 2022, 10(1):56-69.
|
26 |
Cheng N, Bei Y, Song Y, et al. B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy[J]. Biochem Pharmacol, 2021, 183:114298. doi: 10.1016/j.bcp.2020.114298.
|
27 |
Amori G, Sugawara E, Shigematsu Y, et al. Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer[J]. Prostate Cancer Prostatic Dis, 2021, 24(3):767-774.
|
28 |
Wang J, Chen X, Xie C, et al. MicroRNA miR-29a inhibits colon cancer progression by downregulating B7-H3 expression: potential molecular targets for colon cancer therapy[J]. Mol Biotechnol, 2021, 63(9):849-861.
|
29 |
Li Y, Yang X, Wu Y, et al. B7-H3 promotes gastric cancer cell migration and invasion[J]. Oncotarget, 2017, 8(42):71725-71735.
|
30 |
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11):1767-1773.
|
31 |
Kontos F, Michelakos T, Kurokawa T, et al. B7-H3: an attractive target for antibody-based immunotherapy[J]. Clin Cancer Res, 2021, 27(5):1227-1235.
|
32 |
Lu Z, Zhao ZX, Cheng P, et al. B7-H3 immune checkpoint expression is a poor prognostic factor in colorectal carcinoma[J]. Mod Pathol, 2020, 33(11):2330-2340.
|
33 |
Zhang Q, Zong L, Zhang H, et al. Expression of B7-H3 correlates with PD-L1 and poor prognosis in patients with cervical cancer[J]. Onco Targets Ther, 2021, 14:4275-4283.
|
34 |
Proctor DT, Patel Z, Lama S, et al. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma[J]. Oncoimmunology, 2018, 8(1):e1512943. doi: 10.1080/2162402X.2018.1512943.
|
35 |
Zang X, Sullivan PS, Soslow RA, et al. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas[J]. Mod Pathol, 2010, 23(8):1104-1112.
|
36 |
Zang X, Thompson RH, Al-Ahmadie HA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome[J]. Proc Natl Acad Sci U S A, 2007, 104(49):19458-19463.
|
37 |
Qiu M, Xia Q, Chen Y, et al. The Expression of three negative co-stimulatory B7 family molecules in small cell lung cancer and their effect on prognosis[J]. Front Oncol, 2021, 11:600238. doi: 10.3389/fonc.2021.600238.
|
38 |
Cai D, Li J, Liu D, et al. Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy[J]. Cell Mol Immunol, 2020,17(3):227-236.
|
39 |
Nehama D, Di Ianni N, Musio S, et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres[J]. EBioMedicine, 2019, 47:33-43.
|
40 |
Tang X, Zhao S, Zhang Y, et al. B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma[J]. Mol Ther Oncolytics, 2019,14:279-287.
|
41 |
Haydar D, Houke H, Chiang J, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery[J]. Neuro Oncol, 2021, 23(6):999-1011.
|
42 |
Oser MG, Niederst MJ, Sequist LV, et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin[J]. Lancet Oncol, 2015, 16(4):e165-172.
|
43 |
Altan M, Pelekanou V, Schalper KA, et al. B7-H3 Expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes[J]. Clin Cancer Res, 2017, 23(17):5202-5209.
|
44 |
Zhu L, Liu J, Zhou G, et al. Remodeling of tumor microenvironment by tumor-targeting nanozymes enhances immune activation of CAR T cells for combination therapy[J]. Small, 2021, 17(43):e2102624. doi: 10.1002/smll.202102624.
|
45 |
Liu J, Yang S, Cao B, et al. Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes[J]. J Hematol Oncol, 2021, 14(1):21. doi: 10.1186/s13045-020-01024-8.
|
46 |
Zheng M, Yu L, Hu J, et al. Efficacy of B7-H3-redirected BiTE and CAR-T immunotherapies against extranodal nasal natural killer/T cell lymphoma[J]. Transl Oncol, 2020, 13(5):100770. doi: 10.1016/j.tranon.2020.100770.
|
47 |
Zi Z, Zhao H, Wang H, et al. B7-H3 Chimeric antigen receptor redirected T Cells target anaplastic lymphoma kinase-positive anaplastic large cell lymphoma[J]. Cancers (Basel), 2020, 12(12):3815. doi: 10.3390/cancers12123815.
|
48 |
Majzner RG, Theruvath JL, Nellan A, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors[J]. Clin Cancer Res, 2019, 25(8):2560-2574.
|
49 |
Talbot LJ, Chabot A, Funk A, et al. A novel orthotopic implantation technique for osteosarcoma produces spontaneous metastases and illustrates dose-dependent efficacy of B7-H3-CAR T cells[J]. Front Immunol, 2021, 12:691741. doi: 10.3389/fimmu.2021.691741.
|
50 |
Theruvath J, Sotillo E, Mount CW, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors[J]. Nat Med, 2020, 26(5):712-719.
|
51 |
Long C, Li G, Zhang C, et al. B7-H3 as a Target for CAR-T cell therapy in skull base chordoma[J]. Front Oncol, 2021, 11:659662. doi: 10.3389/fonc.2021.659662.
|
52 |
Zhang Y, He L, Sadagopan A, et al. Targeting radiation-resistant prostate cancer stem cells by B7-H3 CAR T cells[J]. Mol Cancer Ther, 2021,20(3):577-588.
|
53 |
Yang M, Tang X, Zhang Z, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors[J]. Theranostics, 2020,10(17):7622-7634.
|
54 |
Kontos F, Maggs L, Cattaneo G, et al. Radiation enhances the efficacy of B7-H3 chimeric antigen receptor (CAR) T-Cell based immunotherapy for triple negative breast cancer (TNBC)[J]. J Am Collsurgeons, 2020, 231(4):S40-S41.
|
55 |
Zhang Z, Jiang C, Liu Z, et al. B7-H3-Targeted CAR-T cells exhibit potent antitumor effects on hematologic and solid tumors[J]. Mol Ther Oncolytics, 2020, 17:180-189.
|
56 |
Huang B, Luo L, Wang J, et al. B7-H3 specific T cells with chimeric antigen receptor and decoy PD-1 receptors eradicate established solid human tumors in mouse models[J]. Oncoimmunology, 2020, 9(1):1684127. doi: 10.1080/2162402X.2019.1684127.
|
57 |
Theruvath J, Heitzeneder S, Majzner R, et al. Immu-07. checkpoint molecule B7-H3 is highly expressed on medulloblastoma and proves to be a promising candidate for car T cell immunotherapy[J]. Neuro Oncology, 2017, 19(suppl_4):iv28-iv29.
|
58 |
Tang X, Liu F, Liu Z, et al. Bioactivity and safety of B7-H3-targeted chimeric antigen receptor T cells against anaplastic meningioma[J]. Clin Transl Immunology, 2020, 9(6):e1137. doi: 10.1002/cti2.1137.
|
59 |
Milone MC, Bhoj VG. The pharmacology of T cell therapies[J]. Mol Ther Methods Clin Dev, 2018, 8:210-221.
|
60 |
Tang X, Wang Y, Huang J, et al. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma[J]. Signal Transduct Target Ther, 2021, 6(1):125.
|
61 |
Lei X, Ou Z, Yang Z, et al. A pan-histone deacetylase inhibitor enhances the antitumor activity of B7-H3-Specific CAR T cells in solid tumors[J]. Clin Cancer Res, 2021, 27(13):3757-3771.
|