切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 243 -249. doi: 10.3877/cma.j.issn.2095-1221.2022.04.008

综述

靶向B7-H3的CAR-T细胞免疫疗法在实体瘤中的应用研究进展
罗应1, 晏婷1, 陈津1,()   
  1. 1. 海南医学院第二附属医院临床医学研究所
  • 收稿日期:2022-03-08 出版日期:2022-08-01
  • 通信作者: 陈津
  • 基金资助:
    海南省重点研发项目(ZDYF2022SHFZ133); 海南省自然科学基金(822MS173)

The role of B7-H3-targeted chimeric antigen receptor T cell immunotherapy in solid tumors

Ying Luo1, Ting Yan1, Jin Chen1,()   

  1. 1. Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Hai Kou 570311, China
  • Received:2022-03-08 Published:2022-08-01
  • Corresponding author: Jin Chen
引用本文:

罗应, 晏婷, 陈津. 靶向B7-H3的CAR-T细胞免疫疗法在实体瘤中的应用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 243-249.

Ying Luo, Ting Yan, Jin Chen. The role of B7-H3-targeted chimeric antigen receptor T cell immunotherapy in solid tumors[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(04): 243-249.

嵌合抗原受体T (CAR-T)细胞免疫治疗在血液系统恶性肿瘤治疗中取得了显著的成效,为恶性肿瘤治疗带来了曙光,而在实体瘤中的应用面临着巨大的挑战。选择合适的治疗靶点是CAR-T细胞治疗实体瘤的关键。B7-H3蛋白在多种实体瘤中表达量高,与肿瘤的迁移、浸润和发展有关,有望成为实体瘤CAR-T细胞治疗最具潜力的治疗靶点。本文就CAR-T细胞靶点、B7-H3靶点及靶向B7-H3的CAR-T细胞在实体瘤中的研究进展进行总结,为未来CAR-T细胞治疗实体瘤研究提供参考。

The chimeric antigen receptor T (CAR-T) cell immunotherapy has achieved great success in the treatment of hematological malignancies. It brings new hope for the treatment of many malignancies. However, its application in solid tumours still faces enormous challenges. The suitable target antigen was the key to CAR-T cell immunotherapy for solid tumours. B7-H3 protein is highly expressed in a variety of solid tumours, and was related to tumour migration, infiltration and development. It is expected to become the most potential therapeutic target for CAR-T cell therapy in solid tumours. In this article, we summarize the research advance in CAR-T cell targets, B7-H3 target and CAR-T cells targeting B7-H3 in solid tumours, to provide a reference to carry out CAR-T cell solid tumour treatment research.

图1 CAR-T细胞肿瘤免疫治疗示意图注:从患者外周血中提取外周血单个核细胞,筛选出外周血单个核细胞中的T细胞进行扩增,然后转导含有CAR的慢病毒,将含有CAR的T细胞大量培养,收集细胞,鉴定其合格后,回输到患者体内。CAR-T细胞在体内与含有相应抗原的肿瘤靶细胞相结合,产生杀伤作用,从而起到治疗肿瘤的效果;CAR为嵌合抗原受体
图2 B7-H3 CAR-T细胞在实体瘤中的应用注:B7-H3 CAR-T细胞已应用于多种类型的实体瘤,如母胶质细胞瘤、黑色素瘤和淋巴癌等,而且取得令人满意的成功,未来它也将应用在更多实体瘤中,探索更多的治疗潜力
表1 正在实体瘤中进行B7-H3 CAR-T细胞治疗的临床实验
肿瘤类型 临床试验识别符 标题 研究阶段 干预 发起者(合作者) 预计入组人数 主要完成时间
复发性/难治性胶质母细胞瘤 NCT04385173 Pilot Study of B7-H3 CAR-T in Treating Patients With Recurrent and Refractory Glioblastoma I B7-H3 CAR-T Temozolomide 浙江大学医学院附属第二医院(博源润盛制药(杭州)有限公司) 12 2022.5.1
卵巢癌 NCT05211557 Study of Fully Human B7H3 CAR-T in Treating Recurrent Malignant Ovarian Cancer I/II fhB7H3.CAR-Ts 徐州医科大学附属医院(徐州医科大学/IIT医药科技(江苏)有限公司) 15 2023.8.31
复发性胶质母细胞瘤 NCT04077866 B7-H3 CAR-T for Recurrent or Refractory Glioblastoma I/II Temozolomide B7-H3 CAR-T 浙江大学医学院附属第二医院(宁波市鄞州市人民医院/惠州市立中心医院/博源润盛制药(杭州)有限公司) 40 2024.6.1
难治性胶质母细胞瘤
生殖细胞肿瘤、视网膜母细胞瘤、肝母细胞瘤等 NCT04483778 B7-H3 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults I second generation 4-1BBζ B7H3-EGFRt-DHFR second generation 4-1BBζ B7H3-EGFRt-DHFR (selected) and a second generation 4-1BBζ CD19-Her2tG 西雅图儿童医院(Julie Park, Seattle Children’s Hospital) 68 2025.12
胶质母细胞瘤 NCT05241392 Safety and Efficacy Study of Anti-B7-H3 CAR-T Cell Therapy for Recurrent Glioblastoma I B7-H3-targeting CAR-T cells 北京天坛医院 30 2024.12.31
肺癌 NCT03198052 PSCA/MUC1/TGFβ/HER2/Mesothelin/Lewis-Y/GPC3/AXL/EGFR/B7-H3/Claudin18.2-CAR-T Cells Immunotherapy Against Cancers I CAR-T cells targeting PSCA, MUC1, TGFβ, HER2, Mesothelin, Lewis-Y, GPC3, AXL, EGFR, Claudin18.2, or B7-H3 广州医科大学附属第二医院(湖南兆泰永仁医疗创新有限公司/广东兆泰英威生物医药有限公司) 30 2022.8.1
癌症
免疫疗法CAR-T Cell
中枢神经系统肿瘤(弥漫性内源性脑桥胶质瘤、弥漫性中线胶质瘤等) NCT04185038 Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors I SCRI-CARB7H3 (s); B7H3-specific chimeric antigen receptor (CAR) T cel 西雅图儿童医院(Julie Park, Seattle Children's Hospital) 90 2026.5
上皮性卵巢癌 NCT04670068 Phase I Study of Autologous CAR T-Cells Targeting the B7-H3 Antigen in Recurrent Epithelial Ovarian I CAR.B7-H3,Fludarabine,Cyclophosphamide UNC Lineberger综合癌症中心(美国国立卫生研究院(NIH)) 21 2025.2
恶性黑色素瘤 NCT05190185 A Clinical Trial of TAA06 Injection in Advanced Solid Tumors I TAA06 injection(TAA06注射液是针对B7-H3的CART注射液) 人源生物治疗(苏州)有限公司(河北医科大学第四医院免疫科) 18 2023.12.1
肺癌或结直肠癌
晚期胰腺癌 NCT05143151 CD276 targeted Chimeric Antigen Receptor T Cells in Treatment With Advanced Pancreatic Cancer I/II CD276 CAR-T cells 深圳大学附属医院 10 2024.6
实体瘤(如脑肿瘤,尤文氏肉瘤) NCT04432649 Targeting CD276 (B7-H3) Positive Solid Tumors by 4SCAR-276 I/II 4SCAR-276(4th generation CD276-specific chimeric antigen receptor) 深圳市基因免疫医学研究所(中山大学/深圳市儿童医院) 100 2023.5.1
神经母细胞瘤 NCT04637503 4SCAR-T Therapy Targeting GD2, PSMA and CD276 for Treating Neuroblastoma I/II GD2, PSMA CD276 CAR-T cells 深圳市基因免疫医学研究所(深圳市儿童医院) 100 2020.11.19
肝癌 NCT05323201 Study Of B7H3 CAR-T Cells in Treating Advanced Liver Cancer I/II fhB7H3-CAR-Ts, Fludarabine, Cyclophosphamide 徐州医科大学附属医院(徐州医科大学/IIT医疗科技有限公司) 15 2024.2.10
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
2
Miao L, Zhang Z, Ren Z, et al. Reactions Related to CAR-T Cell Therapy[J]. Front Immunol, 2021, 12:663201. doi: 10.3389/fimmu.2021.663201.
3
Li G, Quan Y, Che F, et al. B7-H3 in tumors: friend or foe for tumor immunity?[J]. Cancer Chemother Pharmacol, 2018,81(2):245-253.
4
Wang R, Ma Y, Zhan S, et al. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression[J]. Cell Death Dis, 2020, 11(1):55.doi: 10.1038/s41419-020-2252-3.
5
Li Y, Cai Q, Shen X, et al. Overexpression of B7-H3 is associated with poor prognosis in laryngeal cancer[J]. Front Oncol, 2021, 11:759528. doi:10.3389/fonc.2021.759528.
6
Qin VM, D'Souza C, Neeson PJ, et al. Chimeric antigen receptor beyond CAR-T cells[J]. Cancers (Basel), 2021,13(3):404.
7
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy[J]. Nat Rev Clin Oncol, 2020,17(3):147-167.
8
Batlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies[J]. Nat Rev Clin Oncol, 2016,13(1):25-40.
9
Fan M, Li M, Gao L, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia[J]. J Hematol Oncol, 2017, 10(1):151.
10
Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy[J]. J Hematol Oncol, 2019, 12(1):62.
11
Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains[J]. Nat Rev Clin Oncol, 2021, 18(11):715-727.
12
Roselli E, Boucher JC, Li G, et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells[J]. J Immunother Cancer, 2021,9(10):e003354. doi: 10.1136/jitc-2021-003354.
13
Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function[J]. Sci Signal, 2018,11(544):eaat6753. doi: 10.1126/scisignal.aat6753.
14
Amatya C, Pegues MA, Lam N, et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule F7[J]. Mol Ther, 2021, 29(2):702-717.
15
Juillerat A, Tkach D, Busser BW, et al. Modulation of chimeric antigen receptor surface expression by a small molecule switch[J]. BMC Biotechnology, 2019, 19(1):44.
16
Yang L, Yin J, Wu J, et al. Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol[J]. Proc Natl Acad Sci U S A, 2021, 118(34):e2106612118. doi: 10.1073/pnas.2106612118.
17
Richman SA, Wang L-C, Khire UR, et al. Ligand-induced degradation of a CAR permits reversible remote control of CAR T cell activity in vitro and in vivo[J]. Mol Ther, 2020, 28(7):1600-1613.
18
Chapoval AI, Ni J, Lau JS, et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production[J]. Nat Immunol, 2001, 2(3):269-274.
19
Zhang G, Hou J, Shi J, et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum[J]. Immunology, 2008, 123(4):538-546.
20
Castriconi R, Dondero A, Augugliaro R, et al. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis[J]. Proc Natl Acad Sci U S A, 2004, 101(34):12640-12645.
21
Sun M, Richards S, Prasad DVR, et al. Characterization of mouse and human B7-H3 genes[J]. J Immunol, 2002, 168(12):6294-6297.
22
Zhang J, Liu L, Han S, et al. B7-H3 is related to tumor progression in ovarian cancer[J]. Oncol Rep, 2017, 38(4):2426-2434.
23
Ingebrigtsen VA, Boye K, Tekle C, et al. B7-H3 expression in colorectal cancer: Nuclear localization strongly predicts poor outcome in colon cancer[J]. Int J Cancer, 2012, 131(11):2528-2536.
24
Du H, Hirabayashi K, Ahn S, et al. Antitumor Responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells[J]. Cancer Cell, 2019, 35(2):221-237.e8.
25
Miyamoto T, Murakami R, Hamanishi J, et al. B7-H3 suppresses antitumor immunity via the CCL2-CCR2-M2 macrophage axis and contributes to ovarian cancer progression[J]. Cancer Immunol Res, 2022, 10(1):56-69.
26
Cheng N, Bei Y, Song Y, et al. B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy[J]. Biochem Pharmacol, 2021, 183:114298. doi: 10.1016/j.bcp.2020.114298.
27
Amori G, Sugawara E, Shigematsu Y, et al. Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer[J]. Prostate Cancer Prostatic Dis, 2021, 24(3):767-774.
28
Wang J, Chen X, Xie C, et al. MicroRNA miR-29a inhibits colon cancer progression by downregulating B7-H3 expression: potential molecular targets for colon cancer therapy[J]. Mol Biotechnol, 2021, 63(9):849-861.
29
Li Y, Yang X, Wu Y, et al. B7-H3 promotes gastric cancer cell migration and invasion[J]. Oncotarget, 2017, 8(42):71725-71735.
30
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11):1767-1773.
31
Kontos F, Michelakos T, Kurokawa T, et al. B7-H3: an attractive target for antibody-based immunotherapy[J]. Clin Cancer Res, 2021, 27(5):1227-1235.
32
Lu Z, Zhao ZX, Cheng P, et al. B7-H3 immune checkpoint expression is a poor prognostic factor in colorectal carcinoma[J]. Mod Pathol, 2020, 33(11):2330-2340.
33
Zhang Q, Zong L, Zhang H, et al. Expression of B7-H3 correlates with PD-L1 and poor prognosis in patients with cervical cancer[J]. Onco Targets Ther, 2021, 14:4275-4283.
34
Proctor DT, Patel Z, Lama S, et al. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma[J]. Oncoimmunology, 2018,8(1):e1512943. doi: 10.1080/2162402X.2018.1512943.
35
Zang X, Sullivan PS, Soslow RA, et al. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas[J]. Mod Pathol, 2010, 23(8):1104-1112.
36
Zang X, Thompson RH, Al-Ahmadie HA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome[J]. Proc Natl Acad Sci U S A, 2007, 104(49):19458-19463.
37
Qiu M, Xia Q, Chen Y, et al. The Expression of three negative co-stimulatory B7 family molecules in small cell lung cancer and their effect on prognosis[J]. Front Oncol, 2021,11:600238. doi: 10.3389/fonc.2021.600238.
38
Cai D, Li J, Liu D, et al. Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy[J]. Cell Mol Immunol, 2020,17(3):227-236.
39
Nehama D, Di Ianni N, Musio S, et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres[J]. EBioMedicine, 2019, 47:33-43.
40
Tang X, Zhao S, Zhang Y, et al. B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma[J]. Mol Ther Oncolytics, 2019,14:279-287.
41
Haydar D, Houke H, Chiang J, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery[J]. Neuro Oncol, 2021, 23(6):999-1011.
42
Oser MG, Niederst MJ, Sequist LV, et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin[J]. Lancet Oncol, 2015, 16(4):e165-172.
43
Altan M, Pelekanou V, Schalper KA, et al. B7-H3 Expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes[J]. Clin Cancer Res, 2017, 23(17):5202-5209.
44
Zhu L, Liu J, Zhou G, et al. Remodeling of tumor microenvironment by tumor-targeting nanozymes enhances immune activation of CAR T cells for combination therapy[J]. Small, 2021, 17(43):e2102624. doi: 10.1002/smll.202102624.
45
Liu J, Yang S, Cao B, et al. Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes[J]. J Hematol Oncol, 2021, 14(1):21. doi: 10.1186/s13045-020-01024-8.
46
Zheng M, Yu L, Hu J, et al. Efficacy of B7-H3-redirected BiTE and CAR-T immunotherapies against extranodal nasal natural killer/T cell lymphoma[J]. Transl Oncol, 2020, 13(5):100770. doi: 10.1016/j.tranon.2020.100770.
47
Zi Z, Zhao H, Wang H, et al. B7-H3 Chimeric antigen receptor redirected T Cells target anaplastic lymphoma kinase-positive anaplastic large cell lymphoma[J]. Cancers (Basel), 2020,12(12):3815. doi: 10.3390/cancers12123815.
48
Majzner RG, Theruvath JL, Nellan A, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors[J]. Clin Cancer Res, 2019, 25(8):2560-2574.
49
Talbot LJ, Chabot A, Funk A, et al. A novel orthotopic implantation technique for osteosarcoma produces spontaneous metastases and illustrates dose-dependent efficacy of B7-H3-CAR T cells[J]. Front Immunol, 2021, 12:691741. doi: 10.3389/fimmu.2021.691741.
50
Theruvath J, Sotillo E, Mount CW, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors[J]. Nat Med, 2020, 26(5):712-719.
51
Long C, Li G, Zhang C, et al. B7-H3 as a Target for CAR-T cell therapy in skull base chordoma[J]. Front Oncol, 2021, 11:659662. doi: 10.3389/fonc.2021.659662.
52
Zhang Y, He L, Sadagopan A, et al. Targeting radiation-resistant prostate cancer stem cells by B7-H3 CAR T cells[J]. Mol Cancer Ther, 2021,20(3):577-588.
53
Yang M, Tang X, Zhang Z, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors[J]. Theranostics, 2020,10(17):7622-7634.
54
Kontos F, Maggs L, Cattaneo G, et al. Radiation enhances the efficacy of B7-H3 chimeric antigen receptor (CAR) T-Cell based immunotherapy for triple negative breast cancer (TNBC)[J]. J Am Collsurgeons, 2020, 231(4):S40-S41.
55
Zhang Z, Jiang C, Liu Z, et al. B7-H3-Targeted CAR-T cells exhibit potent antitumor effects on hematologic and solid tumors[J]. Mol Ther Oncolytics, 2020, 17:180-189.
56
Huang B, Luo L, Wang J, et al. B7-H3 specific T cells with chimeric antigen receptor and decoy PD-1 receptors eradicate established solid human tumors in mouse models[J]. Oncoimmunology, 2020, 9(1):1684127. doi: 10.1080/2162402X.2019.1684127.
57
Theruvath J, Heitzeneder S, Majzner R, et al. Immu-07. checkpoint molecule B7-H3 is highly expressed on medulloblastoma and proves to be a promising candidate for car T cell immunotherapy[J]. Neuro Oncology, 2017, 19(suppl_4):iv28-iv29.
58
Tang X, Liu F, Liu Z, et al. Bioactivity and safety of B7-H3-targeted chimeric antigen receptor T cells against anaplastic meningioma[J]. Clin Transl Immunology, 2020, 9(6):e1137. doi: 10.1002/cti2.1137.
59
Milone MC, Bhoj VG. The pharmacology of T cell therapies[J]. Mol Ther Methods Clin Dev, 2018, 8:210-221.
60
Tang X, Wang Y, Huang J, et al. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma[J]. Signal Transduct Target Ther, 2021, 6(1):125.
61
Lei X, Ou Z, Yang Z, et al. A pan-histone deacetylase inhibitor enhances the antitumor activity of B7-H3-Specific CAR T cells in solid tumors[J]. Clin Cancer Res, 2021, 27(13):3757-3771.
[1] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[2] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[3] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[4] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[5] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[8] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[9] 蔡晨, 龚伟. 免疫治疗在胆道肿瘤中的应用现状及展望[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 162-166.
[10] 王健东, 全志伟. 重视胆道恶性肿瘤化疗联合靶向免疫的综合治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 125-130.
[11] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 605-613.
阅读次数
全文


摘要