切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (05) : 311 -316. doi: 10.3877/cma.j.issn.2095-1221.2021.05.009

综述

急性髓系白血病的细胞治疗进展
杨慧1, 姚浩1, 陈丹1,()   
  1. 1. 610083 成都,中国人民解放军西部战区总医院血液科
  • 收稿日期:2021-07-19 出版日期:2021-10-01
  • 通信作者: 陈丹
  • 基金资助:
    西部战区总医院学科助推基金(41732E7); 西部战区总医院院管课题孵化项目(2021-XZYG-C45); 西部战区总医院院管课题面上项目(2021-XZYG-B32)

The review of cell therapy in acute myeloid leukemia

Hui Yang1, Hao Yao1, Dan Chen1,()   

  1. 1. Department of Hematology, the General Hospital of Western Theater Command of Chinese People's Liberation Army, Chengdu 610083, China
  • Received:2021-07-19 Published:2021-10-01
  • Corresponding author: Dan Chen
引用本文:

杨慧, 姚浩, 陈丹. 急性髓系白血病的细胞治疗进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 311-316.

Hui Yang, Hao Yao, Dan Chen. The review of cell therapy in acute myeloid leukemia[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(05): 311-316.

急性髓系白血病(AML)是一种异质性疾病,与广泛的基因型改变有关,长期的疾病控制需要多种治疗方法。在过去的3 ~ 5年中,随着对基因突变的理解和分子特异性认识的提高,基于基因水平的AML靶向细胞治疗迅速发展。目前,利用细胞免疫疗法治疗AML的基础和临床研究已取得不断进展,其中包括自然杀伤(NK)、细胞因子诱导型杀伤(CIK)、嵌合抗原受体T细胞(CAR-T)、肿瘤相关抗原淋巴细胞(TAA-T)和T细胞受体(TCR)修饰型T细胞、CAR-NK和CAR-CIK等细胞治疗,靶基因主要选择CD33、CD123及CLEC12A等髓系抗原。本文综述了以上AML细胞治疗的现状及展望。

Acute myeloid leukemia (AML) is a heterogeneous disease associated with a wide range of genotypes variations. And we know that the disease with long term requires multiple therapeutic approaches to control it. In the past 3 ~ 5 years, gene-level AML-targeted cellular therapies have rapidly improved as understanding of genetic mutations and molecular specificity. And continuous progress has been made in basic and clinical research on the use of cellular immunotherapy for AML, including natural killer (NK) , cytokine-induced killing (CIK) , chimeric antigen receptor T cells (CAR-T) , tumor-associated antigen lymphocytes (TAA-T) and T-cell receptor (TCR) - modified T cells, as well as CAR-NK, CAR-CIK and other cell therapies. And for these treatments, the target genes mainly selected from myeloid antigens such as CD33, CD123 and CLEC12A. The current status and prospects of cell therapy in AML were reviewed in this article.

表1 NK细胞制备相关影响因素
表2 AML细胞治疗的靶抗原
表3 CAR-NK与自体及异体CAR-T细胞治疗的异同
1
Przespolewski A, Szeles A, Wang ES. Advances in immunotherapy for acute myeloid leukemia[J]. Future Oncol, 2018, 14(10):963-978.
2
Yu S, Huang F, Wang Y, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study[J]. Leukemia, 2020, 34(5):1433-1443.
3
Kantarjian HM, DiNardo CD, Nogueras-Gonzalez GM, et al. Results of second salvage therapy in 673 adults with acute myelogenous leukemia treated at a single institution since 2000[J]. Cancer, 2018, 124(12):2534-2540.
4
Curran KJ, Margossian SP, Kernan NA, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL[J]. Blood, 2019, 134(26):2361-2368.
5
Sheffer M, Lowry E, Beelen N, et al. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells[J]. Nat Genet, 2021, 53(8):1196-1206.
6
Carlsten M, Jaras M. Natural killer cells in myeloid malignancies: immune surveillance, NK cell dysfunction, and pharmacological opportunities to bolster the endogenous NK cells[J]. Front Immunol, 2019, 10:2357.doi: 10.3389/fimmu.2019.02357.
7
Romee R, Rosario M, Berrien-Elliott MM, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia[J]. Sci Transl Med, 2016, 8(357):357ra123. doi: 10.1126/scitranslmed.aaf2341.
8
Ciurea SO, Schafer JR, Bassett R, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation[J]. Blood, 2017, 130(16):1857-1868.
9
Kottaridis PD, North J, Tsirogianni M, et al. Two-stage priming of allogeneic natural killer cells for the treatment of patients with acute myeloid leukemia: a phase I trial[J]. PLoS One, 2015, 10(6):e123416.doi: 10.1371/journal.pone.0123416.
10
Ciurea SO, Soebbing D, Rondon G, et al. Interim results of a phase 2 clinical trial using Mb-IL21 ex vivo expanded nk cells to enhance graft versus leukemia effect for patients with myeloid malignancies after haploidentical transplantation[J]. Blood, 2017, 130(Supplement 1):3179.
11
Fehniger TA, Miller JS, Stuart RK, et al. A phase 1 trial of CNDO-109-activated natural killer cells in patients with high-risk acute myeloid leukemia[J]. Biol Blood Marrow Transplant, 2018, 24(8):1581-1589.
12
Daher M, Rezvani K. Outlook for new car-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer[J]. Cancer Discov, 2021,11(1):45-58.
13
Arvindam US, van Hauten P, Schirm D, et al. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells[J]. Leukemia, 2021, 35(6):1586-1596.
14
Morsink LM, Walter RB, Ossenkoppele G J. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia[J]. Blood Rev, 2019, 34:26-33.
15
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. N Engl J Med, 2020, 382(6):545-553.
16
Introna M. CIK as therapeutic agents against tumors[J]. J Autoimmun, 2017, 85:32-44.
17
Peter Bader M, Huenecke S, Bönig H, et al. Preemptive treatment of minimal residual disease (MRD) with IL-15-activated cytokine-induced killer cells for the prevention of relapse in leukemia patients after allogeneic stem cell transplantation-results of a pilot study[J]. Biol Blood Marrow transplantation, 2016, 22(3):S43.
18
Maus MV. CD19 CAR T cells for adults with relapsed or refractory acute lymphoblastic leukaemia[J]. Lancet, 2021, 398(10299):466-467.
19
Liu F, Cao Y, Pinz K, et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial[J]. Blood, 2018, 132(S1):901.
20
Daver N, Alotaibi AS, Bucklein V, et al. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments[J]. Leukemia, 2021, 35(7):1843-1863.
21
Sallman DA, Kerre T, Poire X, et al. Remissions in relapse/refractory acute myeloid leukemia patients following treatment with NKG2D CAR-T therapy without a prior preconditioning chemotherapy[J]. Blood, 2018, 132(Supplement 1):902.
22
Borot F, Wang H, Ma Y, et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies[J]. Proc Natl Acad Sci U S A, 2019, 116(24):11978-11987.
23
Lulla PD, Mamonkin M, Brenner M K. Adoptive Cell Therapy for Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia[J]. Cancer J, 2019, 25(3):199-207.
24
Tan Q, Zhang C, Yang W, et al. Isolation of T cell receptor specifically reactive with autologous tumour cells from tumour-infiltrating lymphocytes and construction of T cell receptor engineered T cells for esophageal squamous cell carcinoma[J]. J Immunother Cancer, 2019, 7(1):232.doi: 10.1186/s40425-019-0709-7.
25
Rotiroti MC, Buracchi C, Arcangeli S, et al. Targeting CD33 in chemoresistant AML patient-derived xenografts by CAR-CIK cells modified with an improved SB transposon system[J]. Mol Ther, 2020, 28(9):1974-1986.
26
Magnani CF, Mezzanotte C, Cappuzzello C, et al. Preclinical efficacy and safety of CD19CAR cytokine-induced killer cells transfected with sleeping beauty transposon for the treatment of acute lymphoblastic leukemia[J]. Hum Gene Ther, 2018, 29(5):602-613.
27
Xue L, Hu Y, Wang J, et al. T cells targeting multiple tumor-associated antigens as a postremission treatment to prevent or delay relapse in acute myeloid leukemia[J]. Cancer Manag Res, 2019, 11:6467-6476.
28
Krawczyk E, Zolov S N, Huang K, et al. T-cell Activity against AML improved by dual-targeted T cells stimulated through T-cell and IL7 receptors[J]. Cancer Immunol Res, 2019, 7(4):683-692.
29
Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant[J]. Nat Med, 2019, 25(7):1064-1072.
30
Zhao XY, Jiang Q, Jiang H, et al. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo[J]. Eur J Immunol, 2020, 50(9):1374-1385.
31
Zuanelli BC, Lobaugh SM, Ruiz JD, et al. Relapse after allogeneic stem cell transplantation of acute myelogenous leukemia and myelodysplastic syndrome and the importance of second cellular therapy[J]. Transplant Cell Ther, 2021, 27(9):771.e1-771.e10.
[1] 钟勇辉, 谢福川, 魏宜胜. 结肠癌来源外泌体对自然杀伤细胞miR-18a和NKG2D表达的影响[J]. 中华普通外科学文献(电子版), 2021, 15(03): 172-177.
[2] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[3] 中国抗癌协会血液肿瘤专业委员会造血干细胞移植与细胞治疗学组. 嵌合抗原受体T细胞治疗相关感染预防、诊断及治疗中国专家共识(2022年版)[J]. 中华移植杂志(电子版), 2022, 16(01): 20-26.
[4] 中国抗癌协会血液肿瘤专业委员会造血干细胞移植与细胞治疗学组. 嵌合抗原受体T细胞治疗相关血液学不良反应临床管理中国专家共识(2022年版)[J]. 中华移植杂志(电子版), 2022, 16(01): 13-19.
[5] 刘妍, 吴涛, 毛东锋, 鱼玲玲, 白海. 人类白细胞抗原全相合异基因造血干细胞移植治疗多基因突变难治性急性髓系白血病一例[J]. 中华移植杂志(电子版), 2021, 15(04): 229-231.
[6] 曹玲莉, 涂平华, 吴展陵, 李新军. NK细胞、Treg细胞、T淋巴亚群在NSCLC外周血中表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 55-57.
[7] 刘泽, 郝言, 赵铎, 徐辉. 复方甘草酸苷对小儿哮喘T淋巴细胞及NK细胞的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 97-99.
[8] 冯星, 靳洪涛, 马隽, 宋永周, 刘爱京. 间充质干细胞治疗炎性关节炎的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 87-92.
[9] 罗应, 晏婷, 陈津. 靶向B7-H3的CAR-T细胞免疫疗法在实体瘤中的应用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 243-249.
[10] 杜为, 崔丽娟, 徐迎, 张华, 杜宏伟, 张金美, 刘容志, 王征宇, 杨文玲, 张宇. 脐带血单个核细胞诱导多能干细胞来源自然杀伤细胞的生物学特性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 329-336.
[11] 孙旭燕, 张学娟, 赵江宁, 王玉霞, 高宗圣, 李小博. 性别差异对间充质干细胞生物学特性的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 317-320.
[12] 谭天华, 宋京海. 肝细胞癌NK细胞及其相关免疫治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 243-246.
[13] 蔡惠宁, 钱师宇, 陈伟材, 黄梦淳, 陈文捷, 卢建溪. 体外扩增外周血NK细胞对不同肿瘤细胞系的细胞毒作用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 411-415.
[14] 孙维英, 蔡晓辉, 陈梅玉, 贾祝霞, 晁红颖, 华海应, 刘洁, 吴品, 卢绪章, 秦伟. 伴DNMT3A突变老年急性髓细胞白血病的分子学特点[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1234-1242.
[15] 时文霞, 郭勇鑫, 申俊杰, 陈文明, 郭文文, 赵同峰, 赵丹丹, 陈建, 孙忠亮, 孙道萍. RUNX1基因突变对成人急性髓系白血病患者临床特征、疗效及预后的影响[J]. 中华诊断学电子杂志, 2022, 10(03): 163-170.
阅读次数
全文


摘要