切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 88 -94. doi: 10.3877/cma.j.issn.2095-1221.2018.02.004

所属专题: 文献

论著

高表达microRNA-155的骨髓间充质干细胞对免疫调节的影响
谢林岑1, 陈月秋1, 沈振亚1,()   
  1. 1. 215000,苏州大学附属第一医院心脏大血管外科
  • 收稿日期:2018-02-03 出版日期:2018-04-01
  • 通信作者: 沈振亚

Effect of bone marrow mesenchymal stem cells modified with miR-155 on immunoregulation

Lincen Xie1, Yueqiu Chen1, Zhenya Shen1,()   

  1. 1. Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
  • Received:2018-02-03 Published:2018-04-01
  • Corresponding author: Zhenya Shen
  • About author:
    Corresponding author: Shen Zhenya, Email:
引用本文:

谢林岑, 陈月秋, 沈振亚. 高表达microRNA-155的骨髓间充质干细胞对免疫调节的影响[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 88-94.

Lincen Xie, Yueqiu Chen, Zhenya Shen. Effect of bone marrow mesenchymal stem cells modified with miR-155 on immunoregulation[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(02): 88-94.

目的

探讨骨髓间充质干细胞(BMSCs)中miR-155表达水平改变后,通过诱导树突状细胞(DC)实现对免疫调节能力的影响。

方法

实验分为control组、miR-155 agomir NC组、miR-155 agomir组、miR-155 antagomir NC组和miR-155 antagomir组,通过脂质体转染特异性调控BMSC中miR-155表达量后诱导DC 48 h,检测该诱导过程对DC的成熟度和迁移能力的影响;经诱导的DC与T细胞共培养72 h后检测T细胞增殖能力。多组间分析采用One-?way ANOVA进行统计学分析,两组间采用t检验进行统计学分析。

结果

流式柱形直观图可见miR-155 angomir组T细胞增殖能力低于其他组。提高miR-155表达水平后,MSCs诱导的DC细胞成熟的表面标志CD40表达量由100%下降至85%(t = 33.71,P < 0.05);CD86表达水平由100%下降至75%(t = 57.00,P < 0.05)。miR-155 agomir组的BMSCs诱导的DC的迁移能力较其对照组减弱(t = 7.35,P < 0.05)。提高BMSCs中miR-155表达水平后,其诱导的DC的NF-κβ信号通路蛋白表达下降(t = 23.32,P < 0.05);AKT信号通路蛋白表达量下降(t?= 22.21,P < 0.05)。

结论

BMSCs高表达miR-155后,可以通过抑制NF-κβ和AKT途径诱导耐受性DC的产生,通过诱导DC减少T细胞的增殖从而对免疫调节进行影响。

Objective

To specifically alter the expression level of microRNA-155 (miR-?155) in bone marrow-derived mesenchymal stem cells (BMSC), we investigate the effect of BMSCs on immunoregulation by inducing dendritic cells (DC) after the expression of miR-155 was changed in MSCs.

Methods

The experiment was divided into CON, miR-155 agomir NC, miR-?155 agomir, miR-155 antagmir NC and miR-155 antagomir groups. DCs were induced for 48 hours by coculture with BMSCs transfect with difference miR-155 and then the maturation and migration of DC was detected. Further, the induced DCs were co-cultured with T cells for 72 hours to detect T cell proliferation. One-way ANOVA (and non-parametric) was used for statistical analysis among groups and t tests were used for statistical analysis between two groups.

Results

Flow cytometric visualization showed that the proliferation of T cells was decreased in the miR-155 agomir group. The expression level of CD40, the surface markers of DC maturation decreased from 100% to 85%(t = 33.71, P?< 0.05) after the expression of miR-155 was increased, and the expression of CD86 decreased from 100% to 75% (t = 57.00, P < 0.05). Meanwhile BMSCs overexpressed with miR-?155 decrease the migratory ability of DCs (t = 7.35, P < 0.01). The expression of NF-κβ signaling pathway proteins in DCs induced by BMSCs was significantly decreased (t = 23.32, P < 0.05) after the expression of miR-155 was increased in BMSCs; and the expression of AKT signaling pathway proteins was significantly decreased (t = 22.21, P < 0.05).

Conclusion

By inducing DC, BMSCs highly expressed with miR-155 decreased the proliferation of T cells. The high expression level of miR-155 enhances the immunosuppressive capacity of BMSCs.

表1 人工合成microRNA序列
表2 实时荧光定量PCR体系
表3 转染后miR-155表达结果(±s
图1 BMSC表型的鉴定
图2 倒置相差显微镜下观察转染后的间充质干细胞(×100)
图3 流式细胞检测Fam组荧光提示转染效率为100﹪
表4 DC表面标志表达结果(﹪,±s
表5 Transwell小室中迁移DC数目(个,±s
表6 AKT和NF-κβ信号通路蛋白相对表达情况结果(±s
图4 转染前后DC表面标志表达情况
图5 倒置相差显微镜下观察DC迁移能力(×100)
图6 Western Blot检测信号通路蛋白表达情况
图7 流式细胞检测T细胞增殖能力
1
Keto J, Kaartinen T, Salmenniemi U, et al. Immunomonitoring of MSC-Treated GvHD patients reveals only moderate potential for response prediction but indicates treatment safety[J]. Mol Ther Methods Clin Dev, 2018, 9:109-118.
2
Wang XL, Zhao YY, Sun L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7[J]. Int J Mol Med, 2018, 41(5):3063-3072.
3
张玲,张祥忠,李晓青, 等. 脐带间充质干细胞治疗难治性慢性移植物抗宿主病的疗效观察[J]. 器官移植, 2016, 7(6):459-462.
4
Zhao K, Lou R, Huang F, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2015, 21(1):97-104.
5
Muller I, Kordowich S, Holzwarth C, et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation[J]. Blood Cells Mol Dis, 2008, 40(1):25-32.
6
Liu T, Zhang Y, Shen Z, et al. Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation[J]. Int J Mol Med, 2017, 39(1):144-152.
7
Jin X, Su R, Li R, et al. Crucial role of pro-inflammatory cytokines from respiratory tract upon PM2.5 exposure in causing the BMSCs differentiation in cells and animals[J]. Oncotarget, 2018, 9(2):1745-1759.
8
Fang Y, Chu L, Li L, et al. Tetramethylpyrazine protects bone marrow-derived mesenchymal stem cells against hydrogen peroxide-induced apoptosis through PI3K/Akt and ERK1/2 pathways[J]. Biol Pharm Bull, 2017, 40(12):2146-2152.
9
Huang H, He J, Teng X, et al. Combined intrathymic and intravenous injection of mesenchymal stem cells can prolong the survival of rat cardiac allograft associated with decrease in miR-155 expression[J]. J Surg Res, 2013, 185(2):896-903.
10
Zhang A, Wang K, Zhou C, et al. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection[J]. J Heart Lung Transplant, 2017, 36(2):175-184.
11
Aboelenein HR, Hamza MT, Marzouk H, et al. Reduction of CD19 autoimmunity marker on B cells of paediatric SLE patients through repressing PU.1/TNF-alpha/BAFF axis pathway by miR-155[J]. Growth Factors, 2017, 35(2-3):49-60.
12
Elmesmari A, Fraser AR, Wood C, et al. MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis[J]. Rheumatology (Oxford), 2016, 55(11):2056-2065.
13
Garcia-Rodriguez S, Arias-Santiago S, Blasco-Morente G, et al. Increased expression of microRNA-155 in peripheral blood mononuclear cells from psoriasis patients is related to disease activity[J]. J Eur Acad Dermatol Venereol, 2017, 31(2):312-322.
14
Yan L, Hu F, Yan X, et al. Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response[J]. J Mol Med (Berl), 2016, 94(9):1063-1079.
15
Iberg CA, Jones A, Hawiger D. Dendritic cells as inducers of peripheral tolerance[J]. Trends Immunol, 2017, 38(11):793-804.
16
Huang C, Zhang L, Ling F, et al. Effect of immune tolerance induced by immature dendritic cells and CTLA4-Ig on systemic lupus erythematosus: An in vivo study[J]. Exp Ther Med, 2018, 15(3):2499-2506.
17
Wan J, Huang F, Hao S, et al. Interleukin-10 gene-modified dendritic cell-induced type 1 regulatory T cells induce transplant-tolerance and impede graft versus host disease after allogeneic stem cell transplantation[J]. Cell Physiol Biochem, 2017, 43(1):353-366.
18
Lee YS, Sah SK, Lee JH, et al. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice[J]. Biochem Biophys Rep, 2017, 9:281-288.
19
Sadeghi L, Karimi MH, Kamali-Sarvestani E, et al. The immunomodulatory effect of bone-marrow mesenchymal stem cells on expression of TLR3 and TLR9 in mice dendritic cells[J]. Int J Organ Transplant Med, 2017, 8(1): 5-42.
20
Tsukamoto H, Fujieda K, Hirayama M, et al. Soluble IL6R expressed by myeloid cells reduces tumor-specific Th1 differentiation and drives tumor progression[J]. Cancer Res, 2017, 77(9):2279-2291.
21
Pichler R, Gruenbacher G, Culig Z, et al. Intratumoral Th2 predisposition combines with an increased Th1 functional phenotype in clinical response to intravesical BCG in bladder cancer[J]. Cancer Immunol Immunother, 2017, 66(4):427-440.
22
Dewitte H, Verbeke R, Breckpot K, et al. Choose your models wisely: how different murine bone marrow-derived dendritic cell protocols influence the success of nanoparticulate vaccines in vitro[J]. J Control Release, 2014, 195:138-146.
23
Salmenniemi U, Itala-Remes M, Nystedt J, et al. Good responses but high TRM in adult patients after MSC therapy for GvHD[J]. Bone Marrow Transplant, 2017, 52(4):606-608.
24
Sun Y, Kong W, Huang S, et al. Comparable therapeutic potential of umbilical cord mesenchymal stem cells in collagen-induced arthritis to TNF inhibitor or anti-CD20 treatment[J]. Clin Exp Rheumatol, 2017, 35(2):288-295.
25
Yu Y, Liao L, Shao B, et al. Knockdown of MicroRNA Let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy[J]. Mol Ther, 2017, 25(2):480-493.
26
Wu M, Guo X, Yang L, et al. Mesenchymal stem cells with modification of junctional adhesion molecule a induce hair formation[J]. Stem Cells Transl Med, 2014, 3(4):481-488.
27
Li Y, Duo Y, Bi J, et al. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy[J]. Int J Nanomedicine, 2018, 13:1241-1256.
28
Tu YX, Wang SB, Fu LQ, et al. Ovatodiolide targets chronic myeloid leukemia stem cells by epigenetically upregulating hsa-miR-155, suppressing the BCR-ABL fusion gene and dysregulating the PI3K/AKT/mTOR pathway[J]. Oncotarget, 2018, 9(3):3267-3277.
29
Peng J, Liu H, Liu C. MiR-155 promotes uveal melanoma cell proliferation and invasion by regulating NDFIP1 expression[J]. Technol Cancer Res Treat, 2017, 16(6):1160-1167.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[3] 梁冬梅, 王燕, 戴峻. 调节性T细胞与子宫内膜异位症关系的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 627-633.
[4] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[5] 肖倩, 张丹丹, 张婷, 贺婵娟, 张伟芳, 吴登旬, 刘英. 树突状细胞在口腔扁平苔藓发病机制中的作用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 229-233.
[6] 周艳群, 陈鹏, 刘增慧, 毛晶晶, 黎耀和. 多发性骨髓瘤患者骨髓间充质干细胞衰老关键基因和通路的生物信息学分析与验证[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 274-281.
[7] 夏杰, 唐紫萌, 吴向未. E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 343-350.
[8] 刘一栋, 贾玉凤, 王燕, 刘扬, 宁金月. 大豆异黄酮上调Wnt-1基因表达促进骨髓间充质干细胞增殖和成骨分化的研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 292-297.
[9] 李应明, 陈华, 伍燕. K562来源的外泌体对骨髓间充质干细胞造血和成骨基因表达的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 207-214.
[10] 赵梓妍, 丁怡, 马建民. 雌激素缺乏对泪腺组织影响的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 252-256.
[11] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[12] 刘娟丽, 马四清, 陈强. 肺表面活性蛋白-D功能及其在肺部常见疾病中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 167-172.
[13] 杨辉, 鲁利香, 易健, 易旭. 骨髓间充质干细胞及补脑Ⅰ号处理后血清对小鼠海马神经元缺氧缺糖模型ICAM-1、NF200表达的影响[J]. 中华临床医师杂志(电子版), 2022, 16(01): 100-106.
[14] 茅敏, 李秀, 王子丹, 单亮. 血小板及其表面受体配体在脓毒症凝血病中作用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(04): 302-307.
[15] 张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J]. 中华临床医师杂志(电子版), 2021, 15(04): 265-271.
阅读次数
全文


摘要