切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 95 -102. doi: 10.3877/cma.j.issn.2095-1221.2018.02.005

所属专题: 文献

论著

定向激活HIF-1协同脂肪干细胞对糖尿病小鼠皮肤创伤修复的促进作用
杜俊凯1,(), 陈明月1, 徐之超1, 白立曦1, 段鹏1   
  1. 1. 710061 西安交通大学第一附属医院急诊科
  • 收稿日期:2018-01-16 出版日期:2018-04-01
  • 通信作者: 杜俊凯
  • 基金资助:
    陕西省科学技术研究发展计划项目(2013k12-05-02)

Targeted activation of HIF-1 gene coordinated ASCs can promote the wound healing of diabetic mice

Junkai Du1,(), Mingyue Chen1, Zhichao Xu1, Lixi Bai1, Peng Duan1   

  1. 1. Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong Universty, Xi'an 710061, China
  • Received:2018-01-16 Published:2018-04-01
  • Corresponding author: Junkai Du
  • About author:
    Corresponding author:Du Junkai, Email:
引用本文:

杜俊凯, 陈明月, 徐之超, 白立曦, 段鹏. 定向激活HIF-1协同脂肪干细胞对糖尿病小鼠皮肤创伤修复的促进作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 95-102.

Junkai Du, Mingyue Chen, Zhichao Xu, Lixi Bai, Peng Duan. Targeted activation of HIF-1 gene coordinated ASCs can promote the wound healing of diabetic mice[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(02): 95-102.

目的

探讨定向激活HIF-1协同脂肪干细胞(ASCs)对糖尿病小鼠损伤修复的影响及机制。

方法

8周龄雄性SPF级C57BJ/L小鼠68只,行腹腔注射1%链脲佐菌素(STZ,60?mg/?kg)的柠檬酸-柠檬酸钠缓冲液,3 d后空腹血糖大于16.7 mmol/L的小鼠用于实验。在小鼠背部做直径为1 cm的圆形皮肤全层创口,将动物随机分为空载质粒(EV)组,CA5-HIF-1α转染(CA5)组,EV+saline组,CA5+saline组,EV+ASCs组,CA5+ASCs组。于给药后第0、3、7、10、14、17和21天,观察并记录创口面积大小,利用激光多普勒血流成像(LDPI)检测血流灌注情况,荧光定量PCR法检测HIF-1α及VEGF mRNA表达水平,HE染色检测血管密度,Western blot法检测VEGE蛋白表达水平。用Bonferroni或Tukey post hoc方差分析法进行统计学分析。

结果

CA5-HIF-1α基因注射剂量为125 μg时,局部HIF-1α mRNA表达水平较高为10.40±0.22(F = 19.48,P = 0.025),故选用125 μg用于后续实验。于给药后第3 ~ 14天,CA5组小鼠的伤口面积分别为7?828.92±294.28、7?285.97±118.24、4?050.41±301.97、1?292.35±101.14小于EV组9?062.00±225.75、8?534.42±189.35、5?634.59±198.06、2?308.15±245.36(F?=?41.37、32.16、27.29、25.16,P?=?0.028、0.034、0.038、0.042)。CA5组小鼠皮肤血流于第10、17天(253.06±8.34、250.59±10.13)均大于EV组(158.31±9.98、169.73±7.28)(F?=?21.53、26.08,P?=?0.038、0.032)。在治疗后3 ~ 14天,CA5+saline组(7?656.92±177.03、7?163.83±128.24、4?238.23±228.36、1?316.52±90.75)、EV+ASCs组(7?593.64±192.12、7?233.08±146.86、4?097.58±227.91)及CA5+ASCs组的伤口面积小于对照组(6?745.25±203.16、6?159.35±168.72、3?682.06±257.30)(F?=?39.58、44.09、34.67,P?=?0.031、0.028、0.037),且CA5+ASCs组最小。本研究还发现CA5+saline组(262.05±9.34、248.45±11.13)、EV+ASCs组(215.33±10.75、185.82±10.47)及CA5+ASCs组(322.54±12.27、292.49±9.57)的小鼠皮肤血流于第10天和第17天均大于对照组(161.30±5.64、134.57±8.67)(F?=?29.15、17.38,P?=?0.026、0.034),CA5+ASCs组血流增加幅度最大。此外,CA5+saline组、EV+ASCs组及CA5+ASCs组血管密度大于对照组,且CA5+ASCs组最高。CA5+saline组、EV+ASCs组及CA5+ASCs组VEGF mRNA及蛋白表达水平分别为2.03±0.14、2.16±0.13、3.41±0.18和1.75±0.12、1.82±0.06、2.96±0.14,高于对照组1.05±0.02和1.03±0.05(F?=?34.08、29.53,P?=?0.019、0.021),且CA5+ASCs组最高。

结论

定向激活HIF-1基因协调脂肪干细胞可促进糖尿病小鼠创伤修复,可能与其调控VEGF表达有关。

Objective

To explore the effect of combination of HIF-1α gene transfection and Adipose stem cells (ASCs) on diabetic wound healing in mice.

Methods

Sixty-eight SPF C57BJ/L mice were intravenously treated with 1% streptozotocin (STZ) at a dose of 60 mg/?kg versus body weight for 3 days. Animals with fasting blood glucose concentration higher than 16.7?mmol/L were employed in the following experiment. Subsequently, on the back of mice, round-thickness skin wounds with 1 cm were made. The mice were randomly divided into empty vector group (EV), a plasmid DNA construct expressing a stabilized mutant form of HIF-1α (CA5-HIF-1α) vector transfected group (CA5), EV+ saline group, CA5+saline group, EV+ASCs group, CA5+ASCs group. On the 3rd, 10rd, 17rd, 21st days after treatment, the area of the wounds was measured. The dermal blood flow was measured by Laser Doppler perfusion imaging (LDPI). The levels of HIF-1α and VEGF mRNA were measured by quantitative Real-time PCR (qRT-PCR). The blood vessel density was detected by H&E staining. The level of VEGF protein was measured by Western blot. The statistical analysis was used with the Bonferroni or Tukey post hoc variance analysis method.

Results

The level of HIF-1α mRNA expression treated with 125 μg CA5-HIF-1α gene was the highest among all doses (10.40±0.22) (F = 19.48, P = 0.025) so we selected 125 μg HIF-1α gene for the following experiments. By days 3 ~ 14, the wound area in CA5 group (7?828.92±294.28, 7?285.97±118.24, 4?050.41±301.97, 1?292.35±101.14) was smaller than the EV group (9?062.00±225.75, 8?534.42±189.35, 5?634.59±198.06, 2?308.15±245.36) (F?=?41.37, 32.16, 27.29, 25.16, P?=?0.028, 0.034, 0.038, 0.042). Besides, in the 10th and 17th days, the blood flow of mice in CA5 group (253.06±8.34, 250.59±10.13) was significantly greater than that of the EV group (158.31±9.98, 169.73±7.28) (F?=?21.53, 26.08, P?=?0.038, 0.032). ASCs were shown to have promotive effects on the wound healing. Therefore, we further explored the effects of combination of HIF-1α gene and ASCs therapy on skin wound healing in diabetic mice. We found that the wound area of CA5+saline group (7?656.92±177.03, 7?163.83±128.24, 4?238.23±228.36, 1?316.52±90.75), EV+ASCs group (7?593.64±192.12, 7?233.08±146.86, 4?097.58±227.91), CA5+ASCs group (7?593.64±192.12, 7?233.08±146.86, 4?097.58±227.91) were significantly smaller than the control group (6?745.25±203.16, 6?159.35±168.72, 3?682.06±257.30) (F?=?39.58, 44.09, 34.67, P?=?0.031, 0.028, 0.037) on 3 ~ 14 days after treatment. Besides, CA5+ASCs group showed the smallest wound area. In addition, we also found that the blood flow of CA5+saline group (262.05±9.34, 248.45±11.13), EV+ASCs group (215.33±10.75, 185.82±10.47), CA5+ASCs group (322.54±12.27, 292.49±9.57) significantly increased on day 10 compared to the control group (161.30±5.64, 134.57±8.67) (F = 29.15, 17.38, P = 0.026, 0.034). Moreover, the blood flow in combination group increased sharpest. CA5+saline group, EV+ASCs group, CA5+ASCs group showed an obvious increase in vessel density and the combined group had the highest increase in vessel density. We also found that the expression levels of VEGF mRNA and protein in CA5+saline group, EV+ASCs group, CA5+ASCs group (2.03±0.14, 2.16±0.13, 3.41±0.18) and (1.75±0.12, 1.82±0.06, 2.96±0.14) were significantly higher than those in the control group (1.05±0.02) and (1.03±0.05) (F = 34.08, 29.53, P = 0.019, 0.021). The combined group showed the highest levels of VEGF expression.

Conclusion

Targeted activation of HIF-1 gene coordinated ASCs can promote the wound healing of diabetic mice, and its mechanism may be related to regulation of VEGF expression.

图1 CA5-HIF-1α示意图
表1 HIF-1α、VEGF、GAPDH基因的引物
图2 不同处理组小鼠HIF-1α mRNA表达水平的比较
表2 不同处理组经定向激活HIF-1基因治疗后糖尿病小鼠伤口面积的比较(像素,±s
图3 CA5-HIF-1α基因治疗组(CA5组)与空白对照组(EV组)小鼠创面血流量比较
表3 不同处理组经HIF-1α基因联合ASCs治疗后糖尿病小鼠伤口面积的比较(像素,±s
图4 不同处理组小鼠创面血流量比较
图5 荧光显微镜下观察各组小鼠皮肤创面的血管密度(HE染色 ×50)
图6 不同处理组小鼠的VEGF表达水平的比较
图7 不同处理组小鼠VEGF蛋白表达Western blot检测
1
Hong WX, Hu MS, Esquivel M, et al. The role of hypoxia-inducible factor in wound healing[J]. Adv Wound Care(New Rochelle), 2014, 3(5):390-399.
2
Lokmic Z, Musyoka J, Hewitson TD, et al. Hypoxia and hypoxia signaling in tissue repair and fibrosis[J]. Int Rev Cell Mol Biol, 2012, 296(296):139-185.
3
Ruthenborg RJ, Ban JJ, Wazir A, et al. Regulation of wound healing and fibrosis by hypoxia and Hypoxia-Inducible factor-1[J]. Mol Cells, 2014, 37(9):637-643.
4
Maxson S, Lopez EA, Yoo DA, et al. Concise review: role of mesenchymal stem cells in wound repair[J]. Stem Cells Transl Med, 2012, 1(2):142-149.
5
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12):5447-5454.
6
El-Ghalbzouri A, Gibbs S, Lamme E, et al. Effect of fibroblasts on epidermal regeneration[J]. Br J Dermatol, 2002, 147(2):230-243.
7
Oggu GS, Sasikumar S, Reddy N, et al. Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity[J]. Stem Cell Reviews and Reports, 2017, 13(6):725-740.
8
Stoff A, Rivera AA, Banerjee NS, et al. Promotion of incisional wound repair by human mesenchymal stem cell transplantation[J]. Exp Dermatol, 2009, 18(4):362-369.
9
Liu LY, Yu YH, Hou YS, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats[J]. PLoS One, 2014, 9(2):e88348.
10
Hu SC, Lan C. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing[J]. J Dermatol Sci, 2016, 84(2):121-127.
11
Wang XH, Yu MF, Zhu WY, et al. Adenovirus-Mediated expression of keratinocyte growth factor promotes secondary flap necrotic wound healing in an extended animal model[J]. Aesthetic Plast Surg, 2013, 37(5):1023-1033.
12
Kato Y, Iwata T, Washio K, et al. Creation and transplantation of an adipose-derived stem cell (ASC) sheet in a diabetic wound-healing model[J]. J Vis Exp, 2017 (126).
13
Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology[J]. Diabetes Care, 2003, 26(2):491-494.
14
Zhang XL, Yan XY, Cheng L, et al. Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice[J]. PLoS One, 2013, 8(12):e84548.
15
Berra E, Roux D, Richard DE, et al. Hypoxia-inducible factor-1 alpha(HIF-1 alpha)escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization:nucleus or cytoplasm[J]. EMBO Rep, 2001, 2(7):615-620.
16
Okonkwo UA, Dipietro LA. Diabetes and wound angiogenesis[J]. Int J Mol Sci, 2017, 18(7):1419.
17
Schellinger IN, Cordasic N, Panesar JA, et al. Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease[J]. Kidney Int, 2017, 91(3):616-627.
18
Cousin B, Caspar-Bauguil S, Planat-Bénard V, et al. Adipose tissue:a subtle and complex cell system[J]. J Soc Biol, 2006, 200(1):51-57.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[3] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[4] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[5] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[6] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[7] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[8] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[11] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[12] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要