切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 65 -71. doi: 10.3877/cma.j.issn.2095-1221.2018.02.001

所属专题: 文献

论著

TLRs信号通路激活的MSCs外泌体对巨噬细胞极化的影响
冉凤英1, 陈龙2, 张斌强2, 尚兵2, 余飞2, 陈炜2, 陈琴华1,()   
  1. 1. 437100 咸宁,湖北科技学院药学院;442000 十堰,湖北医药学院附属东风医院实验中心
    2. 442000 十堰,湖北医药学院附属东风医院实验中心
  • 收稿日期:2018-01-31 出版日期:2018-04-01
  • 通信作者: 陈琴华
  • 基金资助:
    湖北省教育厅科学研究计划资助项目(D20172101); 湖北医药学院校基金立项资助项目(FDFR201614); 十堰市科学技术研究与开发项目(17Y49)

Effect of MSCs exosomes activated by TLRs signaling pathway on the polarization of macrophages

Fengying Ran1, Long Chen2, Bingqiang Zhang2, Bing Shang2, Fei Yu2, Wei Chen2, Qinhua Chen1,()   

  1. 1. School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
    2. Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
  • Received:2018-01-31 Published:2018-04-01
  • Corresponding author: Qinhua Chen
  • About author:
    Corresponding author: Chen Qinhua, Email:
引用本文:

冉凤英, 陈龙, 张斌强, 尚兵, 余飞, 陈炜, 陈琴华. TLRs信号通路激活的MSCs外泌体对巨噬细胞极化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 65-71.

Fengying Ran, Long Chen, Bingqiang Zhang, Bing Shang, Fei Yu, Wei Chen, Qinhua Chen. Effect of MSCs exosomes activated by TLRs signaling pathway on the polarization of macrophages[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(02): 65-71.

目的

探讨Toll样受体(TLR)3和4信号通路激活的间充质干细胞外泌体(MSCs-Exo)对巨噬细胞极化的影响。

方法

差速贴壁法体外培养大鼠骨髓源MSCs,用外泌体提取试剂盒分别提取MSCs、TLR3信号通路激活的MSCs、TLR4信号通路激活的MSCs培养上清中的外泌体。用含10%FBS、10%L929条件培养基的RPMI-1640培养得M0型巨噬细胞,实验分6组:对照组及MSCs-Exo、TLR3信号通路激活的MSCs-Exo、TLR4信号通路激活的MSCs-Exo、LPS、IL-4+IL-13分别与M0型巨噬细胞共培养,48 h后收集各组巨噬细胞光镜下观察形态,流式和qPCR检测免疫表型(CD206、Arg-1、TNF-α、iNOS)及炎症因子(CCL22、IL-1β、IL-6、IL-10)表达的改变。组间比较采用单因素方差分析及独立t检验进行统计学分析。

结果

MSCs鉴定符合间充质干细胞特性,MSCs-Exo为双层膜囊泡结构,直径在40 ~ 200 nm之间,表达外泌体标志性蛋白CD9、HSP70;光镜下观察各组巨噬细胞形态,加MSCs-Exo及TLR3和TLR4信号通路激活的MSCs-Exo刺激的巨噬细胞呈长梭形,伪足较多;流式检测发现,加MSCs-Exo及TLR3和TLR4信号通路激活的MSCs-Exo刺激的巨噬细胞均高表达CD206(107.2±6.87、102.4±9.83、112.0±9.24 vs 56.0±7.38,F?=?47.234,P均< 0.001)、Arg-1(135.2±6.87、130.2±7.59、203.4±9.07 vs 117.8±9.12,F =109.827,P =?0.009、0.048、0.000);低表达TNF-α(27.0±5.65、24.6±5.02、25.6±4.15 vs 36.6±7.09,F = 4.882,P = 0.046、0.015、0.017),而MSCs-Exo刺激的巨噬细胞低表达iNOS(240.2 ± 8.43 vs 308.8±9.88,P < 0.001);TLR3和TLR4信号通路激活的MSCs-Exo刺激的巨噬细胞iNOS表达差异无统计学意义(P > 0.05)。qPCR检测发现,加MSCs-Exo及TLR3和TLR4信号通路激活的MSCs-Exo刺激的巨噬细胞均高表达CCL22(2.277±0.744、1.570±0.209、1.642±0.443 vs 1.000±0.111,F = 23.654,P = 0.015、0.003、0.031)、IL-10(1.233±0.136、2.426±0.343、1.390±0.155 vs 1.000±0.130,F?= 103.251,P = 0.048、0.000、0.008),低表达IL-1β(0.383±0.035、0.640±0.143、0.242±0.073 vs 1.000±0.082,F = 12.315,P = 0.000、0.005、0.000)、IL-6(0.386±0.066、0.655±0.046、0.533±0.090 vs 1.000±0.204,F = 30.140,P = 0.001、0.006、0.016)。

结论

TLR3和TLR4信号通路激活的MSCs-Exo均能促使巨噬细胞向M2型极化。

Objective

To investigate the effect of MSCs exosomes (mesenchymal stem cells derived exosome, MSCs-Exo) activated byToll-like receptors 3 and 4 signaling pathways on the polarization of macrophages.

Methods

After cultured MSCs sourced fromrat bone marrow by differential adherence, exosomesfrom MSCs, MSCs activated by TLR3 signaling and MSCs activated by TLR4 signaling were extracted from cell culture supernatant by exosome Extraction Kit. M0 macrophages cultured with RPMI-1640 containing 10%FBS and 10%L929 medium,were divided into 6 groups: a control group, the MSCs-Exo, MSCs-Exo activated by TLR4 signaling pathways, MSCs-Exo activated by TLR3 signaling pathways, LPSand IL-4+IL-13. After cultured for 48 h, morphology of macrophages was observed under an electronic microscope. The immunophenotype (CD206, Arg-1, TNF-α and iNOS ) and difference of expression of inflammatory factors (CCL22, IL-1β, IL-6 and IL-10) of macrophages in each group were detected by flow and qPCR, respectively.Single factor analysis of variance and independent t test were used for statistical analysis.

Results

The cultured MSCs are identical with the characteristics of mesenchymal stem cells. The results showed that MSCs-Exo was a double layer membrane vesicle structure with the diameter of 40 ~ 200 nm, expressing ofexosomes protein CD9 and HSP70. The morphology of macrophages in each group was observed under an electronic microscope, Morphology of long carboxylic shape and many pseudopods were observed in groups withmacrophages stimulated by MSCs-Exo, MSCs-Exo activated by TLR4 signaling pathways and MSCs-Exo activated by TLR3 signaling pathways. High expression of CD206 (107.2±6.87, 102.4±9.83, 112.0±9.24 vs 56.0±7.38, F = 47.234, P = 0.000, respectively) and Arg-1 (135.2±6.87, 130.2±7.59, 203.4±9.07 vs 117.8±9.12, F = 109.827, P = 0.009, 0.048, 0.000), and low expression of TNF-α (27.0±5.65, 24.6±5.02, 25.6±4.15 vs 36.6±7.09, F = 4.882, P = 0.046, 0.015, 0.017) were respectively detected by flow cytometry in the groups withthe macrophages activated by MSCs-Exo, MSCs-Exo activated by TLR4 signaling pathways and MSCs-Exo activated by TLR3 signaling pathways, and low expression ofiNOS (240.2±8.43 vs 308.8±9.88, P = 0.000)with the macrophages activated by MSCs-Exo,and invariant expression of iNOS (P > 0.05) with the macrophages activated by MSCs-Exo activated by TLR4 signaling pathways and MSCs-Exo activated by TLR3 signaling pathways.High expression of CCL22 (2.277±0.744, 1.570±0.209, 1.642±0.443 vs 1.000±0.111, F = 23.654, P = 0.015, 0.003, 0.031) and IL-10 (1.233±0.136, 2.426±0.343, 1.390±0.155 vs 1.000±0.130, F = 103.251, P = 0.048, 0.000, 0.008), low expression ofIL-1β (0.383±0.035, 0.640±0.143, 0.242±0.073 vs 1.000±0.082, F = 12.315, P = 0.000, 0.005, 0.000)and IL-6 (0.386±0.066, 0.655±0.046, 0.533±0.090 vs 1.000±0.204, F = 30.140, P = 0.001, 0.006, 0.016) were detected by qPCR.

Conclusion

Polarization of macrophages to M2 type can be stimulated by MSCs-Exo activated by TLR3 and TLR4 signaling pathway.

表1 引物序列
图1 倒置荧光显微镜下观察MSCs形态及成骨成脂诱导结果(油红O及茜素红S染色,×200)
图2 流式细胞术对MSCs表面标记物的鉴定结果
图3 透射电镜下MSCs-Exo的形态(200 nm,×30000)
图4 Western blot鉴定MSCs-Exo
图5 倒置相差显微镜下观察巨噬细胞形态(×400)
表2 FCM分析各组巨噬细胞表面蛋白CD206、Arg-1、iNOS、TNF-α的表达(±s
表3 qPCR分析各组巨噬细胞炎症因子IL-10、CCL22、IL-1β、IL-6的表达(±s
1
Genin M, Clement F, Fattaccioli A, et al. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide[J]. BMC Cancer, 2015,15(1):577.
2
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184(1):436-445.
3
Edin S, Wikberg ML, Rutegard J, et al. Phenotypic skewing of macrophages in vitro by secreted factors from colorectal cancer cells[J]. PLoS One, 2013, 8(9):e74982.
4
Ti DD, Hao HJ, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13:308.
5
Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1):42-49.
6
Betancourt AM. New cell-based therapy paradigm: induction of bone marrow-derived multipotentmesenchymal stromal cells into pro-inflammatory MSC1, and Anti-inflammatory MSC2, phenotypes[J]. Adv Biochem Eng Biotechnol, 2013, 130:163-197.
7
Wang Y, Chen XD, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications[J]. Nat Immunol, 2014, 15(11):1009-1016.
8
Kou X, Xu X, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med. 2018, 10(432).
9
连真珍,林绍强. 骨髓间充质干细胞的特性及应用基础研究进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2013, 3(1):22-26.
10
Arora S, Dev K, Agarwal B, et al. Macrophages:theirrole,activation and polarization in pulmonary diseases[J]. Immunobiology, 2018, 223(4-5):383-396.
11
Zhao H, Shang QW, Pan ZZ, et al. Exosomes from Adipose-Derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018, 67(2):235-247.
12
Shiratori H, Feinweber C, Luckhardt S, et al. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro[J]. MolImmunol, 2017, 88:58-68.
13
Lu LY, Loi F, Nathan K, et al. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway[J]. J Orthop Res, 2017, 35(11):2378-2385.
14
Wu KQ, Muratore CS, So EY, et al. M1 macrophage-induced endothelial-to-mesenchymal transition promotes infantile hemangioma regression[J]. Am JPathol, 2017, 187(9):2102-2111.
15
Yu B, Zhang XM, Li XR. Exosomes derived from mesenchymal stem cells[J]. Int J MolSci, 2014, 15(3):4142-4157.
16
冯啸,陈良,张琪, 等. 人脐带间充质干细胞来源的外泌体减轻肝脏缺血再灌注损伤及机制的初步研究[J/CD]. 中华细胞与干细胞杂志(电子版), 2017, 7(04):224-230.
17
侯宇,周霞,蔡维乐, 等. 骨髓间充质干细胞对巨噬细胞极化的影响[J]. 中华肝脏病杂志, 2017, 25(4):273-278.
18
Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype[J]. PLoS One, 2010, 5(4):e10088.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[3] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[7] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[8] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[12] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[13] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[14] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要