切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 72 -79. doi: 10.3877/cma.j.issn.2095-1221.2018.02.002

所属专题: 文献

论著

支架材料对棕色脂肪源性干细胞向起搏细胞诱导分化的影响
姬瑞娟1, 乔梁1, 黄超1, 陈磊1, 李玉泉1, 杨向群1,()   
  1. 1. 200433 上海,第二军医大学解剖教研室(再生医学研究中心)
  • 收稿日期:2017-11-01 出版日期:2018-04-01
  • 通信作者: 杨向群
  • 基金资助:
    国家自然科学基金面上项目(31170934,31271050)

Effect of brown adipose-derived stem cells differentiating into pacemaker cells induced by scaffold materials

Ruijuan Ji1, Liang Qiao1, Chao Huang1, Lei Chen1, Yuquan Li1, Xiangqun Yang1,()   

  1. 1. Department of Anatomy, Center of Regenerative Medicine, Second Military Medical University, Shanghai 200433, China
  • Received:2017-11-01 Published:2018-04-01
  • Corresponding author: Xiangqun Yang
  • About author:
    Corresponding author:Yang Xiangqun, Email:
引用本文:

姬瑞娟, 乔梁, 黄超, 陈磊, 李玉泉, 杨向群. 支架材料对棕色脂肪源性干细胞向起搏细胞诱导分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 72-79.

Ruijuan Ji, Liang Qiao, Chao Huang, Lei Chen, Yuquan Li, Xiangqun Yang. Effect of brown adipose-derived stem cells differentiating into pacemaker cells induced by scaffold materials[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(02): 72-79.

目的

观察不同三维支架材料对棕色脂肪来源干细胞(BADSCs)诱导分化成起搏细胞的效果,为构建生物起搏器提供实验依据。

方法

将培养7 d的原代BADSCs分别种植到胶原海绵、明胶海绵和透明质酸水凝胶3种不同的材料中,在不同时间用光镜和扫描电镜观察细胞-支架复合体中细胞形态学的变化,免疫荧光染色检测心肌细胞、起搏细胞相关蛋白的表达。采用单因素方差分析。

结果

细胞在3种支架上均能存活、增殖,LIVE/DEAD检测显示,培养3 d的胶原海绵、明胶海绵和透明质酸水凝胶3种细胞-支架复合物死细胞率分别为(46.35±1.50)%、(47.00±1.60)%和(1.76±1.08)%,其中细胞在透明质酸水凝胶中死亡率最低,并且细胞-透明质酸水凝胶复合物可自发性地搏动,三组比较差异具有统计学意义(F = 37.56,P < 0.05)。培养至2周时,胶原海绵、明胶海绵和透明质酸水凝胶中Connexin45细胞阳性率分别为(10.67±1.25)%、(13.67±1.25)%和(21.00±1.60)%,差异有统计学意义(F = 9.435,P < 0.01),HCN2细胞阳性率分别为(11.00±1.60)%、(14.00±2.16)%和(34.33±3.68)%,差异有统计学意义(F = 17.52,P < 0.01),HCN4细胞阳性率分别为(18.67±2.05)%、(13.00±1.60)%和(66.00±2.94)%,差异有统计学意义(F = 27.96,P < 0.01),Sr细胞阳性率分别为(13.00±1.63)%、(14.33±1.24)%和(75.33±3.30)%,差异有统计学意义(F = 36.40,P < 0.01),水凝胶中Connexin45、HCN2、HCN4和Sr的细胞阳性率均高于胶原海绵和明胶海绵,差异均具有统计学意义(P < 0.05)。

结论

BADSCs在胶原海绵、明胶海绵和透明质酸水凝胶中均能很好地生长和分化,但透明质酸水凝胶更适用于组织工程化起搏器的构建。

Objective

The effects of brown adipose-derived stem cells (BADSCs) differentiating into pacemaker cells induced by three dimensional scaffold materials were observed to provide experimental evidence for the construction of tissue engineered pacemaker in vitro.

Methods

BADSCs, cultivated for 7 days, were planted into the collagen sponge, gelatin sponge and hydrogel separately. Cell morphology changes in the cell-scaffold complex were observed with the light microscope and scanning electron microscope at different time. Immunofluorescence staining was used to detect the expression of myocardial and pacemaker cell-related protein. The values were analyzed using one-way ANOVA.

Results

BADSCs survived and proliferated in all three kinds of scaffold. According to the LIVE/DEAD detection, the cell death rate in collagen sponges, gelatin sponges and hyaluronic acid hydrogels was (46.35±1.50) %, (47±1.60) % (1.76±1.08) %, respectively. The cells in the hyaluronic acid hydrogel had the lowest mortality (F = 37.56, P?< 0.05) , while the cell-hyaluronic acid hydrogel complex spontaneously pulsated. Two weeks after planting, the positive rate of Connexin45 cells in collagen sponges, gelatin sponges and hyaluronic acid hydrogels was (10.67±1.25) %, (13.67±1.25) %and (21±1.60) %respectively. The positive rate of HCN2 cells was (11±1.60) %, (14±2.16) % and (34.33±3.68) %, the positive rate of HCN4 cells was (18.67±2.05) %, (13±1.60) % and (66±2.94) %respectively and the positive rate of Sr cells was (13±1.63) %, (14.33±1.24) % and (75.33±3.30) %respectively. Positive rates of Connexin45, HCN2, HCN4 and Sr cells in hydrogels were significantly higher than that in collagen sponge and gelatin sponge (P < 0.05) .

Conclusion

BADSCs could grow and differentiate well in collagen sponges, gelatin sponges and hyaluronic acid hydrogels, and hyaluronic acid hydrogels was more suitable for the construction of tissue engineered pacemaker.

图1 倒置相差显微镜下观察分离培养的原代BADSCs(×200)
图2 流式细胞分析BADSCs的表面标志
图3 光学显微镜下观察BADSCs成脂,成软骨,成骨分化结果(×200)
图4 激光共聚焦显微镜下观察支架中的棕色脂肪来源干细胞(LIVE-DEAD染色,bar = 250 μm)
图5 荧光显微镜下观察棕色脂肪来源干细胞在支架中的生长形态(CM-DIL标记,×200)
图6 光学显微镜下观察2周细胞-支架复合体中细胞分布(HE染色,×400)
图7 扫描电镜下观察2周细胞-支架复合体中细胞形态(bar = 200 μm)
表1 单个视野下三组支架材料中阳性细胞比较(﹪,±s
图8 激光共聚焦显微镜下观察2周细胞-支架复合体中BADSCs的起搏基因表达(免疫荧光染色,bar = 25μm)
1
Ohlow MA, Lauer B, Brunelli M, et al. Incidence and predictors of pericardial effusion after permanent heart rhythm device implantation: prospective evaluation of 968 consecutive patients[J]. Circ J, 2013, 77(4):975-981.
2
Protze SI, Liu J, Nussinovitch U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker[J]. Nat Biotechnol, 2017, 35(1):56-68.
3
Ishikawa K, Tilemann L, Ladage D, et al. Cardiac gene therapy in large animals: bridge from bench to bedside[J]. Gene Ther, 2012, 19(6):670-677.
4
Jun C, Zhihui Z, Lu W, et al. Canine bone marrow mesenchymal stromal cells with lentiviral mHCN4 gene transfer create cardiac pacemakers[J]. Cytotherapy, 2012, 14(5):529-539.
5
Choi YH, Stamm C, Hammer PE, et al. Cardiac conduction through engineered tissue[J]. Am J Pathol, 2006, 169(1):72-85.
6
Schweizer PA, Darche FF, Ullrich ND, et al. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells[J]. Stem Cell Res Ther, 2017, 8(1):229.
7
Zhang L, Li X, Yu X, et al. Construction of vascularized pacemaker tissues by seeding cardiac progenitor cells and endothelial progenitor cells into Matrigel[J]. Life Sci, 2017, 179:139-146.
8
张喜,李晓童. 让生物起搏梦想照进现实-再建心脏房室传导的策略思考[J]. 第二军医大学学报, 2017, 38(7):821-827.
9
Yamada Y, Wang XD, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium[J]. Biochem Biophys Res Commun, 2006, 342(2):662-670.
10
陈磊,姬瑞娟,邓子军, 等. 阻断经典Wnt通路对棕色脂肪干细胞向起搏样细胞分化的作用[J]. 解剖学杂志, 2015, 38(2):133-136.
11
Chen L, Deng ZJ, Zhou JS, et al. Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells[J]. Mol Cell Biochem, 2017, 433(1/2):61-77.
12
Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds[J]. Proc Natl Acad Sci U S A, 2004, 101(52):18129-18134.
13
Ponticiello MS, Schinagl RM, Kadiyala S, et al. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy[J]. J Biomed Mater Res, 2000, 52(2):246-255.
14
Kutschka I, Chen IY, Kofidis T, et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts[J]. Circulation, 2006, 114(1 Suppl):I167-I173.
15
O'keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic-an overview[J]. Tissue Eng Part B Rev, 2011, 17(6):389-392.
16
Xu X, Jha AK, Harrington DA, et al. Hyaluronic Acid-Based hydrogels: from a natural polysaccharide to complex networks[J]. Soft Matter, 2012, 8(12):3280-3294.
17
Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine[J]. J Control Release, 2011, 155(2):193-199.
18
Lawyer T, Mcintosh K, Clavijo C, et al. Formulation changes affect material properties and cell behavior in HA-Based hydrogels[J]. Int J Cell Biol, 2012:737421.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[5] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[6] 李鑫, 邓相奎, 林昌永, 郭勇. 心脏起搏器/心律转复除颤器与体外冲击波碎石相关指南文献解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 313-317.
[7] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[8] 韩思梁, 孔繁昌, 张兰芳, 赵艳莎, 解俊敏. 罕见晕厥2例及文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 159-161.
[9] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[10] 常三帅, 刘新民, 姜正明, 卢志南, 姚晶, 苑飞, 罗太阳, 阴赪茜, 宋光远. 经导管主动脉瓣置换术后高度房室传导阻滞患者应用过渡起搏器恢复窦性心律三例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 169-175.
[11] 魏冰倩, 蓝荣芳. 起搏诱导心肌病应对新策略:导线移除与希氏-浦肯野系统起搏升级[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 155-160.
[12] 杨军, 金艳, 冯秋婷, 秦娴, 喻澄, 曹佳宁. 房室同步无导线起搏器房室传导模式转换功能导致持续性心动过缓一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 123-125.
[13] 王慧俐, 张沛刚, 李军, 薛立新, 刘向阳, 冯小梅, 刘江, 李芳, 王海雄. 经心腔内超声心动图指导下左心耳封堵与无导线起搏器植入术一例[J/OL]. 中华心脏与心律电子杂志, 2023, 11(04): 238-241.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 孙志军, 梁立丰, 柳晓娜, 杨汪洋, 邸北冰, 张妮潇, 彭晖. 接受ICM 的不明原因晕厥患者需行起搏治疗的临床预测因素分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 446-453.
阅读次数
全文


摘要