切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (06) : 374 -377. doi: 10.3877/cma.j.issn.2095-1221.2017.06.012

所属专题: 文献

综述

间充质干细胞调节炎症反应的研究进展
孔旭辉1   
  1. 1. 350025 福州总医院(厦门大学附属东方医院)全军器官移植研究所
  • 收稿日期:2017-06-09 出版日期:2017-12-01
  • 基金资助:
    国家自然科学基金面上项目(81270431)

A review of the role of mesenchymal stem cells in inflammation

Xuhui Kong1   

  1. 1. Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xia Men University Affiliated Dong Fang Hospital, Fuzhou 350025, China
  • Received:2017-06-09 Published:2017-12-01
  • About author:
    Corresponding author: Huang Lianghu, Email:
引用本文:

孔旭辉. 间充质干细胞调节炎症反应的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(06): 374-377.

Xuhui Kong. A review of the role of mesenchymal stem cells in inflammation[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(06): 374-377.

间充质干细胞(MSCs)因具有免疫调理、分泌细胞因子和取材方便等优点而备受关注,成为细胞治疗的理想种子细胞。MSCs在炎症反应进程中起着重要调节作用,可通过与炎症细胞的相互作用来调节炎症反应,包括减弱中性粒细胞和淋巴细胞黏附于内皮细胞的能力、调节巨噬细胞向促进炎症的M1型和抑制炎症的M2型巨噬细胞之间的相互转化、调节促进炎症的T细胞与抗炎作用的调节性T细胞(Tregs)之间的平衡等机制来调节炎症反应。炎性环境中,MSCs能够通过自身肿瘤坏死因子α刺激基因6的高表达来抵御炎性环境。不同的炎性介质作用于MSCs,可使其呈现出不同的促炎或抗炎特性,可为众多炎症性疾病的治疗提供了新思路和方法。

Mesenchymal stem cells (MSCs) are a group of highly perfect seeding cells for cell therapy for the potential ability of regulating immune system, secreting cytokine and collecting convenient. MSCs play an important role in the regulation of inflammation to interact with inflammatory cells to modulate this process, including decreasing the adhesion to endothelial cells of the neutrophil and lymphocyte, facilitating the differentiation of mononuclear cells to M1 or M2 macrophage, balancing the reciprocal transformation between M1 and M2 cells, regulating the balance of T-lymphocyte and regulated T-lymphocyte (Tregs). MSCs could resist an inflammatory environment by high expression of tumor necrosis factor aipha-stimulated gene-6. And MSCs have different effects in promoting or resisting inflammation under different cytokines environment.

1
FriedensteinAJ, Petrakova KV, Kurolesova AI,et al. Heterotopic transplants of bone marrow[J]. Transplantation, 1968, 6(2):230-247.
2
Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century[J]. Trends Mol Med, 2001, 7(6):259-264.
3
Di Trapani M, Bassi G, Midolo M, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions[J]. Sci Rep, 2016, 6:24120.
4
Zhao K, Lou R, Huang F, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2015, 21(1):97-104.
5
Gotherstrom C, Westgren M, Shaw SW, et al. Pre-and postnatal transplantation offetal mesenchymal stem cells in osteogenesis imperfecta:a two-center experience[J]. Stem Cells Transl Med, 2014, 3(2):255-264.
6
Dalal J, Gandy K, Domen J. Role of mesenchymal stem cell therapy in Crohn's disease[J]. Pediatr Res 2012,71(4):445-451.
7
Shrestha B, Coykendall K, Li YC, et al. Repair of injured spinal cord using biomaterial scaffolds and stem cells[J]. Stem Cell Res Ther, 2014, 5(4):91.
8
Ankrum J, Karp JM. Mesenchymal stem cell therapy: Two steps forward, one step back[J]. Trends Mol Med, 2010, 16(5):203-209.
9
Gao F, Chiu SM, Motan D, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects[J]. Cell Death Dis, 2016, 7:e2062.
10
Munir H, Luu NT, Clarke LS, et al. Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium [J]. PLoS One, 2016, 11(5):e0155161.
11
Luu NT, Mcgettrick HM, Buckley CD, et al. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of Cytokine-Induced leukocyte recruitment[J]. Stem Cells, 2013, 31(12):2690-2702.
12
Mantovani A. MSCs, macrophages, and cancer: a dangerous Menage-a-Trois[J]. Cell Stem Cell, 2012, 11(6):730-732.
13
Eggenhofer E, Hoogduijn MJ. Mesenchymal stem cell-educated macrophages[J]. Transplant Res, 2012, 1(1):12.
14
Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation[J]. Cell Stem Cell, 2013, 13(4):392-402.
15
Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013, 229(2):176-185.
16
François M, Romieu-Mourez R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation[J]. Mol Ther, 2012, 20(1):187-195.
17
Li W, Ren G, Huang Y, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses[J]. Cell Death Differ, 2012, 19(9):1505-1513.
18
Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance?[J]. Immunol Cell Biol, 2013, 91(1):12-18.
19
Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation[J]. Curr Mol Med, 2013, 13(5):856-867.
20
Van Den Berk LC, Jansen BJ, Snowden S, et al. Cord blood mesenchymal stem cells suppress DC-T Cell proliferation via prostaglandin B2[J]. Stem Cells Dev, 2014, 23(14):1582-1593.
21
Li M, Sun X, Kuang X, et al. Mesenchymal stem cells suppress CD8+ T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3-dioxygenase and transforming growth factor-beta[J]. Clin Exp Immunol, 2014, 178(3):516-524.
22
Liu LY, Song HF, Duan HJ, et al. TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling[J]. Sci Rep, 2016, 6:30121.
23
Danchuk S, Ylostalo JH, Hossain F, et al. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-alpha-induced protein 6[J]. Stem Cell Res Ther, 2011, 2(3):1-15.
24
Foskett AM, Bazhanov N, Ti XY, et al. Phase-directed therapy: TSG-6 targeted to early inflammation improves bleomycin-injured lungs[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(2):L120-L131.
25
Wang SS, Hu SW, Zhang QH, et al. Mesenchymal stem cells stabilize atherosclerotic vulnerable plaque by Anti-Inflammatory properties[J]. PLoS One, 2015, 10(8):e0136026.
26
Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappa B signaling in resident macrophages[J]. Blood, 2011, 118(2):330-338.
27
Watanabe J, Shetty AK, Hattiangady B, et al. Administration of TSG-6 improves memory after traumatic brain injury in mice[J]. Neurobiol Dis, 2013, 59:86-99.
28
Chen X, Zhang ZY, Zhou H, et al. Characterization of mesenchymal stem cells under the stimulation of Toll- like receptor agonists[J]. Dev Growth Differ, 2014, 56(3):233-244.
29
Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype[J]. PLoS One, 2010, 5(4):e10088.
30
Prockop DJ. Concise review:two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation[J]. Stem Cells, 2013, 31(10):2042-2046.
31
Keating A. Mesenchymal stromal cells: new directions[J]. Cell Stem Cell, 2012, 10(6):709-716.
32
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system[J]. Nat Rev Immunol, 2012, 12(5):383-396.
33
Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells[J]. Front Immunol, 2012, 3:182.
34
Raicevic G, Rouas R, Najar M, et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells[J]. Hum Immunol 2010,71(3):235-244.
[1] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[7] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[11] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[12] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?