切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (06) : 374 -377. doi: 10.3877/cma.j.issn.2095-1221.2017.06.012

所属专题: 文献

综述

间充质干细胞调节炎症反应的研究进展
孔旭辉1   
  1. 1. 350025 福州总医院(厦门大学附属东方医院)全军器官移植研究所
  • 收稿日期:2017-06-09 出版日期:2017-12-01
  • 基金资助:
    国家自然科学基金面上项目(81270431)

A review of the role of mesenchymal stem cells in inflammation

Xuhui Kong1   

  1. 1. Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xia Men University Affiliated Dong Fang Hospital, Fuzhou 350025, China
  • Received:2017-06-09 Published:2017-12-01
  • About author:
    Corresponding author: Huang Lianghu, Email:
引用本文:

孔旭辉. 间充质干细胞调节炎症反应的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(06): 374-377.

Xuhui Kong. A review of the role of mesenchymal stem cells in inflammation[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(06): 374-377.

间充质干细胞(MSCs)因具有免疫调理、分泌细胞因子和取材方便等优点而备受关注,成为细胞治疗的理想种子细胞。MSCs在炎症反应进程中起着重要调节作用,可通过与炎症细胞的相互作用来调节炎症反应,包括减弱中性粒细胞和淋巴细胞黏附于内皮细胞的能力、调节巨噬细胞向促进炎症的M1型和抑制炎症的M2型巨噬细胞之间的相互转化、调节促进炎症的T细胞与抗炎作用的调节性T细胞(Tregs)之间的平衡等机制来调节炎症反应。炎性环境中,MSCs能够通过自身肿瘤坏死因子α刺激基因6的高表达来抵御炎性环境。不同的炎性介质作用于MSCs,可使其呈现出不同的促炎或抗炎特性,可为众多炎症性疾病的治疗提供了新思路和方法。

Mesenchymal stem cells (MSCs) are a group of highly perfect seeding cells for cell therapy for the potential ability of regulating immune system, secreting cytokine and collecting convenient. MSCs play an important role in the regulation of inflammation to interact with inflammatory cells to modulate this process, including decreasing the adhesion to endothelial cells of the neutrophil and lymphocyte, facilitating the differentiation of mononuclear cells to M1 or M2 macrophage, balancing the reciprocal transformation between M1 and M2 cells, regulating the balance of T-lymphocyte and regulated T-lymphocyte (Tregs). MSCs could resist an inflammatory environment by high expression of tumor necrosis factor aipha-stimulated gene-6. And MSCs have different effects in promoting or resisting inflammation under different cytokines environment.

1
FriedensteinAJ, Petrakova KV, Kurolesova AI,et al. Heterotopic transplants of bone marrow[J]. Transplantation, 1968, 6(2):230-247.
2
Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century[J]. Trends Mol Med, 2001, 7(6):259-264.
3
Di Trapani M, Bassi G, Midolo M, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions[J]. Sci Rep, 2016, 6:24120.
4
Zhao K, Lou R, Huang F, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2015, 21(1):97-104.
5
Gotherstrom C, Westgren M, Shaw SW, et al. Pre-and postnatal transplantation offetal mesenchymal stem cells in osteogenesis imperfecta:a two-center experience[J]. Stem Cells Transl Med, 2014, 3(2):255-264.
6
Dalal J, Gandy K, Domen J. Role of mesenchymal stem cell therapy in Crohn's disease[J]. Pediatr Res 2012,71(4):445-451.
7
Shrestha B, Coykendall K, Li YC, et al. Repair of injured spinal cord using biomaterial scaffolds and stem cells[J]. Stem Cell Res Ther, 2014, 5(4):91.
8
Ankrum J, Karp JM. Mesenchymal stem cell therapy: Two steps forward, one step back[J]. Trends Mol Med, 2010, 16(5):203-209.
9
Gao F, Chiu SM, Motan D, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects[J]. Cell Death Dis, 2016, 7:e2062.
10
Munir H, Luu NT, Clarke LS, et al. Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium [J]. PLoS One, 2016, 11(5):e0155161.
11
Luu NT, Mcgettrick HM, Buckley CD, et al. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of Cytokine-Induced leukocyte recruitment[J]. Stem Cells, 2013, 31(12):2690-2702.
12
Mantovani A. MSCs, macrophages, and cancer: a dangerous Menage-a-Trois[J]. Cell Stem Cell, 2012, 11(6):730-732.
13
Eggenhofer E, Hoogduijn MJ. Mesenchymal stem cell-educated macrophages[J]. Transplant Res, 2012, 1(1):12.
14
Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation[J]. Cell Stem Cell, 2013, 13(4):392-402.
15
Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013, 229(2):176-185.
16
François M, Romieu-Mourez R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation[J]. Mol Ther, 2012, 20(1):187-195.
17
Li W, Ren G, Huang Y, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses[J]. Cell Death Differ, 2012, 19(9):1505-1513.
18
Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance?[J]. Immunol Cell Biol, 2013, 91(1):12-18.
19
Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation[J]. Curr Mol Med, 2013, 13(5):856-867.
20
Van Den Berk LC, Jansen BJ, Snowden S, et al. Cord blood mesenchymal stem cells suppress DC-T Cell proliferation via prostaglandin B2[J]. Stem Cells Dev, 2014, 23(14):1582-1593.
21
Li M, Sun X, Kuang X, et al. Mesenchymal stem cells suppress CD8+ T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3-dioxygenase and transforming growth factor-beta[J]. Clin Exp Immunol, 2014, 178(3):516-524.
22
Liu LY, Song HF, Duan HJ, et al. TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling[J]. Sci Rep, 2016, 6:30121.
23
Danchuk S, Ylostalo JH, Hossain F, et al. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-alpha-induced protein 6[J]. Stem Cell Res Ther, 2011, 2(3):1-15.
24
Foskett AM, Bazhanov N, Ti XY, et al. Phase-directed therapy: TSG-6 targeted to early inflammation improves bleomycin-injured lungs[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(2):L120-L131.
25
Wang SS, Hu SW, Zhang QH, et al. Mesenchymal stem cells stabilize atherosclerotic vulnerable plaque by Anti-Inflammatory properties[J]. PLoS One, 2015, 10(8):e0136026.
26
Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappa B signaling in resident macrophages[J]. Blood, 2011, 118(2):330-338.
27
Watanabe J, Shetty AK, Hattiangady B, et al. Administration of TSG-6 improves memory after traumatic brain injury in mice[J]. Neurobiol Dis, 2013, 59:86-99.
28
Chen X, Zhang ZY, Zhou H, et al. Characterization of mesenchymal stem cells under the stimulation of Toll- like receptor agonists[J]. Dev Growth Differ, 2014, 56(3):233-244.
29
Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype[J]. PLoS One, 2010, 5(4):e10088.
30
Prockop DJ. Concise review:two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation[J]. Stem Cells, 2013, 31(10):2042-2046.
31
Keating A. Mesenchymal stromal cells: new directions[J]. Cell Stem Cell, 2012, 10(6):709-716.
32
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system[J]. Nat Rev Immunol, 2012, 12(5):383-396.
33
Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells[J]. Front Immunol, 2012, 3:182.
34
Raicevic G, Rouas R, Najar M, et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells[J]. Hum Immunol 2010,71(3):235-244.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[9] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[14] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要