| 1 |
GBD 2019 diseases and injuries collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258):1204-1222.
|
| 2 |
Cayabyab F, Nih LR, Yoshihara E. Advances in pancreatic islet transplantation sites for the treatment of diabetes[J]. Front Endocrinol (Lausanne), 2021, 12:732431.
|
| 3 |
Sakran N, Graham Y, Pintar T, et al. The many faces of diabetes. Is there a need for re-classification? A narrative review[J]. BMC Endocr Disord, 2022, 22(1):9.
|
| 4 |
Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure[J]. Nat Rev Endocrinol, 2020, 16(7):349-362.
|
| 5 |
胡启桢, 张梅. 胰腺或胰岛移植后1型糖尿病复发的预测[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(6):364-367.
|
| 6 |
Bornstein SR, Ludwig B, Steenblock C. Progress in islet transplantation is more important than ever[J]. Nat Rev Endocrinol, 2022, 18(7):389-390.
|
| 7 |
Oraibi O, Alameer A, Dalak M, et al. Impaired awareness of hypoglycemia and its risk factors among diabetic patients in Jazan, Saudi Arabia: a cross-sectional study[J]. Curr Diabetes Rev, 2024, 20(8):124-137.
|
| 8 |
Hatle H, Skrivarhaug T, Bjørgaas MR, et al. Prevalence and associations of impaired awareness of hypoglycemia in a pediatric type 1 diabetes population-the Norwegian Childhood Diabetes Registry[J]. Diabetes Res Clin Pract, 2024, 209:111093.
|
| 9 |
Lin YK, Fisher SJ, Pop-Busui R. Hypoglycemia unawareness and autonomic dysfunction in diabetes: lessons learned and roles of diabetes technologies[J]. J Diabetes Investig, 2020, 11(6):1388-1402.
|
| 10 |
Zhu B, Qu S. The relationship between diabetes mellitus and cancers and its underlying mechanisms[J]. Front Endocrinol (Lausanne), 2022, 13:800995.
|
| 11 |
Cheng R, Taleb N, Stainforth-Dubois M, et al. The promising future of insulin therapy in diabetes mellitus[J]. Am J Physiol Endocrinol Metab, 2021, 320(5):E886-E890.
|
| 12 |
Opara A, Jost A, Dagogo-Jack S, et al. Islet cell encapsulation-application in diabetes treatment[J]. Exp Biol Med (Maywood), 2021, 246(24):2570-2578
|
| 13 |
Ryan AJ, O'Neill HS, Duffy GP, et al. Advances in polymeric islet cell encapsulation technologies to limit the foreign body response and provide immunoisolation[J]. Curr Opin Pharmacol, 2017, 36:66-71.
|
| 14 |
Huan Z, Li J, Luo Z, et al. Hydrogel-encapsulated pancreatic islet cells as a promising strategy for diabetic cell therapy[J]. Research (Wash D C), 2024, 7:0403.
|
| 15 |
Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238.
|
| 16 |
Parums DV. Editorial: first regulatory approval for allogeneic pancreatic islet beta cell infusion for adult patients with type 1 diabetes mellitus[J]. Med Sci Monit, 2023, 29:e941918.
|
| 17 |
Balboa D, Prasad RB, Groop L, et al. Genome editing of human pancreatic beta cell models: problems, possibilities and outlook[J]. Diabetologia, 2019, 62(8):1329-1336.
|
| 18 |
Araújo-Gomes N, Zoetebier-Liszka B, van Loo B, et al. Microfluidic generation of thin-shelled polyethylene glycol-tyramine microgels for non-invasive delivery of immunoprotected β-cells[J]. Adv Healthc Mater, 2024, 13(25):e2301552.
|
| 19 |
Long R, Liu Y, Wang S, et al. Co-microencapsulation of BMSCs and mouse pancreatic β cells for improving the efficacy of type I diabetes therapy[J]. Int J Artif Organs, 2017, 40(4):169-175.
|
| 20 |
Jain C, Ansarullah S, Bilekova HL, et al. Targeting pancreatic beta cells for diabetes treatment[J]. Nat Meta, 2022, 4(9):1097-1108.
|
| 21 |
Bevacqua RJ, Dai X, Lam JY, et al. CRISPR-based genome editing in primary human pancreatic islet cells[J]. Nat Commun, 2021, 12(1):2397.
|
| 22 |
Pellegrini S, Zamarian V, Sordi V. Strategies to improve the safety of iPSC-derived β cells for β cell replacement in diabetes[J]. Transpl Int, 2022, 35:10575.
|
| 23 |
Yang J, Yan Y, Yin X, et al. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy[J]. Metabolism, 2024, 152:155786
|
| 24 |
Maestas MM, Bui MH, Millman JR. Recent progress in modeling and treating diabetes using stem cell-derived islets[J]. Stem Cells Transl Med, 2024,13(10):949-958.
|
| 25 |
Huang RL, Li Q, Ma JX, et al. Body fluid-derived stem cells-an untapped stem cell source in genitourinary regeneration[J]. Nat Rev Urol, 2023, 20(12):739-761.
|
| 26 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
| 27 |
Mooranian A, Jones M, Ionescu CM, et al. Artificial cell encapsulation for biomaterials and tissue bio-Nanoengineering: history, achievements, limitations, and future work for potential clinical applications and transplantation[J]. J Funct Biomater, 2021, 12(4):68.
|
| 28 |
Hogrebe NJ, Maxwell KG, Augsornworawat P, et al. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines[J]. Nat Protoc, 2021, 16(9):4109-4143.
|
| 29 |
Schmidt MD, Ishahak M, Augsornworawat P, et al. Comparative and integrative single cell analysis reveals new insights into the transcriptional immaturity of stem cell-derived β cells[J]. BMC Genomics, 2024, 25(1):105.
|
| 30 |
Jiang L, Shen Y, Liu Y, et al. Making human pancreatic islet organoids: progresses on the cell origins, biomaterials and three-dimensional technologies[J]. Theranostics, 2022, 12(4):1537–1556.
|
| 31 |
Cao H, Duan L, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity[J]. Signal Transduct Target Ther, 2021, 6(1):426.
|
| 32 |
Foster GA, García AJ. Bio-synthetic materials for immunomodulation of islet transplants[J]. Adv Drug Deliv Rev, 2017, 114:266-271.
|
| 33 |
Kim BS, Das S, Jang J, et al. Decellularized extracellular matrix-based bioinks for engineering tissue and organ-specific microenvironments[J]. Chem Rev, 2020, 120(19):10608-10661.
|
| 34 |
Mohammadi P, Habibizadeh M, Amirian R, et al. An alginate-based construct for improved regeneration of tissues by angiogenesis promotion: a review[J]. ACS Biomater Sci Eng, 2025, 11(9):5210-5227.
|
| 35 |
Liu Q, Chiu A, Wang LH, et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation[J]. Nat Commun, 2019, 10(1):5262.
|
| 36 |
Cambiano-Hernández A, Saenz Del Burgo L, Espona-Noguera A, et al. Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules[J]. Int J Pharm, 2019, 557:192-198.
|
| 37 |
He C, Ji H, Qian Y, et al. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications[J]. J Mater Chem B, 2019, 7(8):1186-1208.
|
| 38 |
Uzunalli G, Tumtas Y, Delibasi T, et al. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels[J]. Acta Biomater, 2015, 22:8-18.
|
| 39 |
Cen L, Liu W, Cui L, et al. Collagen tissue engineering: development of novel biomaterials and applications[J]. Pediatr Res, 2008, 63(5):492-496.
|
| 40 |
Moss SP, Shiwarski DJ, Feinberg AW. FRESH 3D bioprinting of collagen typesⅠ,Ⅱ, and Ⅲ[J]. ACS Biomater Sci Eng, 2025, 11(1):556-563.
|
| 41 |
Stephens CH, Orr KS, Acton AJ, et al. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo[J]. Am J Physiol Endocrinol Metab, 2018, 315(4):E650-E661.
|
| 42 |
Dayoon K Jaewook K, Jinah J. Advancements in biomaterials and biofabrication for enhancing islet transplantation[J]. Int J Bioprint, 2023, 9(6):1024.
|
| 43 |
Vanaei S, Parizi MS, Vanaei S, et al. An overview on materials and techniques in 3D bioprinting toward biomedical[J]. Eng Regener, 2021, 2:1-18
|
| 44 |
Blomeier H, Zhang X, Rives C, et al. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation[J]. Transplantation, 2006, 82(4):452-459.
|
| 45 |
Liu W, Feng Z, Ou-Yang W, et al. 3D printing of implantable elastic PLCL copolymer scaffolds[J]. Soft Matter, 2020, 16(8):2141-2148.
|
| 46 |
Teramura Y, Kaneda Y, Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly (vinyl alcohol) anchored to poly (ethylene glycol)-lipids in the cell membrane[J]. Biomaterials, 2007, 28(32):4818-4825.
|
| 47 |
White AM, Shamul JG, Xu J, et al. Engineering strategies to improve islet transplantation for type 1 diabetes therapy[J]. ACS Biomater Sci Eng, 2020, 6(5):2543-2562.
|
| 48 |
Citro A, Moser PT, Dugnani E, et al. Biofabrication of a vascularized islet organ for type 1 diabetes[J]. Biomaterials, 2019, 199:40-51.
|
| 49 |
Brauker J, Martinson LA, Young SK, et al. Local inflammatory response around diffusion chambers containing xenografts. Nonspecific destruction of tissues and decreased local vascularization[J]. Transplantation, 1996, 61(12):1671-1677.
|
| 50 |
Nguyen TT, Emami F, Yook S, et al. Local release of NECA (5'-(N-ethylcarboxamido) adenosine) from implantable polymeric sheets for enhanced islet revascularization in extrahepatic transplantation site[J]. J Control Release, 2020, 321:509-518.
|
| 51 |
Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas[J]. Science, 1980, 210(4472):908-910.
|
| 52 |
Wu S, Wang L, Fang Y, et al. Advances in encapsulation and delivery strategies for islet transplantation[J]. Adv Healthc Mater, 2021, 10(20):e2100965.
|
| 53 |
Grimus S, Sarangova V, Welzel PB, et al. Immunoprotection strategies in β-cell replacement therapy: a closer look at porcine islet xenotransplantation[J]. Adv Sci (Weinh), 2024, 11(31):e2401385.
|
| 54 |
Tomei AA, Manzoli V, Fraker CA, et al. Device design and materials optimization of conformal coating for islets of Langerhans[J]. Proc Natl Acad Sci, 2014, 111(29):10514-10519.
|
| 55 |
Haque MR, Kim J, Park H, et al. Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol[J]. J Control Release, 2017, 258:10-21.
|
| 56 |
Dang TT, Thai AV, Cohen J, et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug[J]. Biomaterials, 2013, 34(23):5792-5801.
|
| 57 |
Lei J, Coronel MM, Yolcu ES, et al. FasL microgels induce immune acceptance of islet allografts in nonhuman primates[J]. Sci Adv, 2022, 8(19):eabm9881.
|
| 58 |
Lew B, Kim IY, Choi H, et al. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets[J]. Drug Deliv Transl Res, 2018, 8(3):857-862.
|
| 59 |
Llacua A, de Haan BJ, Smink SA, et al. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes[J]. J Biomed Mater Res A, 2016, 104(7):1788-1796.
|
| 60 |
Chaudhary D, Nguyen TT, Yook S, et al. Advances in alginate encapsulation of pancreatic islets for immunoprotection in type 1 diabetes[J]. J Pharm Investig, 2023, 53:601-626.
|
| 61 |
Sun J, Li J, Huan Z, et al. Mesenchymal stem cell-laden composite β cell porous microgel for diabetes treatment[J]. Adv Funct Mater, 2023, 33:2211897.
|
| 62 |
Huan Zhikun, Li Jingbo, Guo Jiahui, et al. Pancreatic islet cells in microfluidic-spun hydrogel microfibers for the treatment of diabetes[J]. Acta Biomater, 2024, 187:149-160.
|
| 63 |
Pathak S, Meyer EH. Tregs and mixed chimerism as approaches for tolerance induction in islet transplantation[J]. Front Immunol, 2021, 11:612737.
|
| 64 |
Nijns JR, De Mesmaeker I, Suenens KG, et al. Comparison of omentum and subcutis as implant sites for device-encapsulated human iPSC-derived pancreatic endoderm in nude rats[J]. Cell Transplant, 2023, 32:9636897231167323.
|
| 65 |
Maxwell KG, Kim MH, Gale SE, et al. Differential function and maturation of human stem cell-derived islets after transplantation[J]. Stem Cells Transl Med, 2022, 11(3):322-331.
|
| 66 |
Iwata H, Arima Y, Tsutsui Y. Design of bioartificial pancreases from the standpoint of oxygen supply[J]. Artif Organs, 2018, 42(8):E168-E185.
|
| 67 |
Pedraza E, Coronel MM, Fraker CA, et al. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials[J]. Proc Natl Acad Sci U S A, 2012, 109(11):4245-4250.
|
| 68 |
Wang LH, Ernst AU, Flanders JA, et al. An inverse-breathing encapsulation system for cell delivery[J]. Sci Adv, 2021, 7(20):eabd5835.
|
| 69 |
Jing ZY, Li XH, Fang WL, et al. Artificial pancreas with engineered β cell microspheres overexpressing PD-L1 and algae ameliorate type 1 diabetes[J]. Cell Rep Phys Sci, 2025, 6(5):102549.
|
| 70 |
Ernst AU, Wang LH, Ma M. Interconnected toroidal hydrogels for islet encapsulation[J]. Adv Healthc Mater, 2019, 8(12):e1900423.
|
| 71 |
Weaver JD, Headen DM, Aquart J, et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites[J]. Sci Adv, 2017, 3(6):e1700184.
|
| 72 |
Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation[J]. Nat Biotechnol, 2015, 33(5):518-523.
|
| 73 |
Nalbach L, Roma LP, Schmitt BM, et al. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels[J]. EMBO Mol Med, 2021, 13(1):e12616.
|
| 74 |
Bochenek MA, Veiseh O, Vegas AJ, et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques[J]. Nat Biomed Eng, 2018, 2(11):810-821.
|
| 75 |
Huang L, Xiang J, Cheng Y, et al. Regulation of blood glucose using islets encapsulated in a melanin-modified immune-shielding hydrogel[J]. ACS Appl Mater Interfaces, 2021, 13(11):12877-12887.
|
| 76 |
Vaithilingam V, Evans MDM, Lewy DM, et al. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted[J]. Sci Rep, 2017, 7(1):10059.
|