1 |
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: A report from the american heart association[J].Circulation, 2021, 143(8):e254-e743.
|
2 |
Chen Y, He W, Wei H, et al. Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury[J]. CNS Neurosci Ther, 2023,29(6):1667-1677.
|
3 |
Lim S, Kim TJ, Kim YJ, et al. Senolytic therapy for cerebral ischemiareperfusion injury[J]. Int J Mol Sci, 2021, 22(21):11967-11980.
|
4 |
Bernardo-Castro S, Sousa JA, Brás A, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery[J]. Front Neurol, 2020, 11(1):1-24.
|
5 |
Meng C, Chen S, He Q, et al. IKZF3 modulates cerebral ischemia/reperfusion injury by inhibiting neuroinflammation[J]. Int Immunopharmacol, 2023, 114(1):1-11.
|
6 |
Gültiken N, Gürler H, Yarım GF, et al. Antioxidant and analgesic potential of butorphanol in dogs undergoing ovariohysterectomy[J].Theriogenology, 2022, 190(1):1-7.
|
7 |
Wang H, Wang JL, Ren HW, et al. Butorphanol protects on myocardial ischemia/reperfusion injury in rats through MAPK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(23):10541-10548.
|
8 |
Shen S, Wang J, Zhao Q, et al. The protective effects of butorphanol tartrate against homocysteine-induced blood-brain barrier dysfunction[J]. Bioengineered, 2022, 13(3):7209-7220.
|
9 |
Tang Y, Tong X, Li Y, et al. JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats[J]. Neurosci Lett, 2018,662(1):219-226.
|
10 |
Arani Hessari F, Sharifi M, Yousefifard M, et al. Apelin-13 attenuates cerebral ischemia/reperfusion injury through regulating inflammation and targeting the JAK2/STAT3 signaling pathway[J]. J Chem Neuroanat, 2022, 126(1):1-13.
|
11 |
Chen X, Li P, Huang R, et al. Ulinastatin affects focal cerebral ischemiareperfusion injury via SOCS1-mediated JAK2/STAT3 signalling pathway[J]. Clin Exp Pharmacol Physiol, 2023, 50(1):107-116.
|
12 |
Gültiken N, Gürler H, Yarım GF, et al. Antioxidant and analgesic potential of butorphanol in dogs undergoing ovariohysterectomy[J].Theriogenology, 2022, 190(1):1-7.
|
13 |
Huang Y, Li S, Chen H, et al. Butorphanol reduces the neuronal inflammatory response and apoptosis via inhibition of p38/JNK/ATF2/p53 signaling[J]. Exp Ther Med, 2022, 23 (3):229-238.
|
14 |
Guo P, Hu Q, Wang J, et al. Butorphanol inhibits angiogenesis and migration of hepatocellular carcinoma and regulates MAPK pathway[J]. J Antibiot (Tokyo), 2022, 75(11):626-634.
|
15 |
王明程, 刘丽丹, 马晨光, 等. 布托啡诺对大鼠心肌缺血再灌注损伤的保护作用[J]. 中国临床药理学杂志, 2021, 37(12):1570-1572.
|
16 |
曾恒,仇丽雅,黄青青.布托啡诺调节PKA/CREB信号通路对缺血性脑卒中大鼠神经元焦亡的影响[J].中国动脉硬化杂志, 2024,32(1):17-23.
|
17 |
赵莹,赵晶.酒石酸布托啡诺基于JNK/NF-κB信号通路对大鼠脑缺血再灌注损伤的改善作用[J].河北医药, 2023, 45(3):325-329.
|
18 |
Du H, He Y, Pan Y, et al. Danhong injection attenuates cerebral ischemia-reperfusion injury in rats through the suppression of the neuroinflammation[J]. Front Pharmacol, 2021, 12(1):1-13.
|
19 |
Rahimi S, Dadfar B, Tavakolian G, et al. Morphine attenuates neuroinflammation and blood-brain barrier disruption following traumatic brain injury through the opioidergic system[J]. Brain Res Bull, 2021, 176(1):103-111.
|
20 |
杨其侠,秦浩,郝伟,等.激动GHB受体对大鼠局灶性脑缺血再灌注损伤的保护作用及机制探讨[J].山东医药, 2013, 53(4):14-16.
|
21 |
Ji J, Lin W, Vrudhula A, et al. Molecular interaction between butorphanol and κ-opioid receptor[J]. Anesth Analg, 2020, 131(3):935-942.
|
22 |
李炜,黄素娟,唐红梅,等.天子饮对偏头痛大鼠脑干组织G蛋白含量的影响[J].中国康复, 2008, 23(3):147-149.
|
23 |
Song L, Mu L, Wang H. MicroRNA-489-3p aggravates neuronal apoptosis and oxidative stress after cerebral ischemia-reperfusion injury[J]. Bioengineered, 2022, 13 (6):14047-14056.
|
24 |
Brás JP, Bravo J, Freitas J, et al. TNF-alpha-induced microglia activation requires miR-342: impact on NF-κB signaling and neurotoxicity[J]. Cell Death Dis, 2020, 11(6):415-430.
|
25 |
Li L, Chen L, Lin F, et al. Study of the expression of inflammatory factors IL-4, IL-6, IL-10, and IL-17 in liver failure complicated by coagulation dysfunction and sepsis[J]. J Inflamm Res, 2021, 14(1):1447-1453.
|
26 |
Sakai K, Nozaki Y, Murao Y, et al. Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury[J]. Lab Invest, 2019,99(5):671-683.
|
27 |
Kim BI, Kim JH, Sim DY, et al. Inhibition of JAK2/STAT3 and activation of caspase-9/3 are involved in KYS05090S-induced apoptosis in ovarian cancer cells[J]. Int J Oncol, 2019, 55(1):203-210.
|
28 |
Zhang N, Han L, Xue Y, et al. The protective effect of magnesium lithospermate B on hepatic ischemia/reperfusion via inhibiting the Jak2/Stat3 signaling pathway[J]. Front Pharmacol, 2019, 10(1):620-632.
|
29 |
Zhu H, Jian Z, Zhong Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol, 2021, 12(1):1-12.
|
30 |
Liu H, Li J, Jiang L, et al. Dexmedetomidine pretreatment alleviates cerebral ischemia/reperfusion injury by inhibiting neuroinflammation through the JAK2/STAT3 pathway[J]. Braz J Med Biol Res, 2022,55(1):1-8.
|
31 |
Stevens LE, Peluffo G, Qiu X, et al. JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states[J]. Cancer Res, 2023, 83(2):264-284.
|