1 |
Li D, Nie W, Chen L, et al. Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment[J]. Rsc Advances, 2017, 7(13):7973-7982. doi: 10.1016/j.msec.2020.111760.
|
2 |
Tang H, Hosein A, Mattioli-Belmonte M. Traditional Chinese Medicine and orthopedic biomaterials: Host of opportunities from herbal extracts[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120:111760.
|
3 |
Choi S, Noh SH, Lim CO, et al. Icariin-functionalized nanodiamonds to enhance osteogenic capacity in vitro[J]. Nanomaterials, 2020, 10(10): 2071. doi: 10.3390/nano10102071.
|
4 |
Lai Y, Cao H, Wang X, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits[J]. Biomaterials, 2018, 153:1-13.
|
5 |
Riaz M, Rahman UN, Zia-Ul-Haq M, et al. Ginseng: a dietary supplement as immune-modulator in various diseases[J]. Trends in Food Science & Technology, 2018:8312-8330.
|
6 |
Chen CY, Shie MY, Lee AK, et al. 3D-printed ginsenoside Rb1-loaded mesoporous calcium silicate/calcium sulfate scaffolds for inflammation inhibition and bone regeneration[J]. Biomedicines, 2021, 9(8):907. doi: 10.3390/biomedicines9080907.
|
7 |
Son H, Kim E, Jang W. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells[J]. Life Sci, 2018, 193:34-39.
|
8 |
Li Y, Zhang ZZ. Sustained curcumin release from PLGA microspheres improves bone formation under diabetic conditions by inhibiting the reactive oxygen species production[J]. Drug Des Devel Ther, 2018, 12:1453-1466.
|
9 |
Xue D, Chen E, Zhang W, et al. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration[J]. Oncotarget, 2017, 8(13):21031-21043.
|
10 |
Ge Y, Lu J, Sun Z, et al. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration[J]. Nanomedicine, 2019, 18:336-346.
|
11 |
Zhao ZH, Ma XL, Zhao B, et al. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration[J]. Cell Prolif, 2021, 54(7):e13043. doi: 10.1111/cpr.13043.
|
12 |
Weiye C, Bin S, Chao S, et al. Resveratrol induces proliferation and differentiation of mouse pre-osteoblast MC3T3-E1 by promoting autophagy[J]. BMC Complement Med Ther, 2023, 23(1):121. doi: 10.1186/s12906-023-03943-8.
|
13 |
Ding X, Li W, Chen D, et al. Asperosaponin VI stimulates osteogenic differentiation of rat adipose-derived stem cells[J]. Regen Ther, 2019, 11:17-24.
|
14 |
Zeyuan Z, Zhi Q, Xu Z, et al. Tetrandrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis[J]. Front Pharmacol, 2019, 10:1530. doi: 10.3389/fphar.2019.01530.
|
15 |
Zhang J, Zhang D, Wu C, et al. Icariin-conditioned serum engineered with hyaluronic acid promote repair of articular cartilage defects in rabbit knees[J]. BMC Complement Altern Med, 2019, 19(1):155. doi: 10.1186/s12906-019-2570-0.
|
16 |
Cong ZW, Jun HS, Hua KL, et al. Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro[J]. Exp Ther Med, 2014, 8(5):1528-1534.
|
17 |
Kankala KR, Lu F, Liu C, et al. Effect of icariin on engineered 3D-printed porous scaffolds for cartilage repair[J]. Materials, 2018, 11(8):1390. doi: 10.3390/ma11081390.
|
18 |
Yang J, Liu Y, He L, et al. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration[J]. Acta Biomater, 2018, 74:156-167.
|
19 |
Pengzhen W, Yanchen Y, Wei Y, et al. Curcumin exerts a protective effect on murine knee chondrocytes treated with IL-1β through blocking the NF-κB/HIF-2α signaling pathway[J]. Ann Transl Med, 2021, 9(11):940. doi: 10.21037/atm-21-2701.
|
20 |
Wang W, Sun L, Zhang P, et al. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits[J]. Acta Biomater, 2014, 10(12):4983-4995.
|
21 |
Hu Y, Gui Z, Zhou Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages[J]. Free Radic Biol Med, 2019, 145:146-160.
|
22 |
Zhang X, Shi Y, Zhang Z, et al. Intra-articular delivery of tetramethylpyrazine microspheres with enhanced articular cavity retention for treating osteoarthritis[J]. Asian J Pharm Sci, 2018, 13(3):229-238.
|
23 |
Chunyang H, Ze W, Jingshan S. Pharmacological effects of icariin[J]. Adv Pharmacol, 2020, 87:179-203.
|
24 |
Yuqiong W, LingYan C, Lunguo X, et al. Evaluation of osteogenesis and angiogenesis of icariin in local controlled release and systemic delivery for calvarial defect in ovariectomized rats[J]. Sci Rep, 2017, 7(1):5077. doi: 10.1038/s41598-017-05392-z.
|
25 |
Salarian M, Samimi R, Xu ZW, et al. Microfluidic synthesis and angiogenic activity of ginsenoside Rg1-loaded PPF microspheres[J]. ACS Biomater Sci Eng, 2016, 2(11):1872-1882.
|
26 |
Chen YB, Lan YW, Hung TH, et al. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model[J]. Cell Stress Chaperones, 2015, 20(4):643-652.
|
27 |
Dehui F, Hengping L, Zhenning Z, et al. Resveratrol and angiogenin-2 combined with PEGDA/TCS hydrogel for the targeted therapy of hypoxic bone defects via activation of the autophagy pathway[J]. Front Pharmacol, 2021, 12:618724-618724.
|
28 |
吴涛, 刘英超, 南开辉, 等. 丹参素涂层β-磷酸三钙支架材料的制备与细胞相容性[J].中国组织工程研究, 2017, 21(14):2247-2253.
|
29 |
Chuanlei J, Long B, Jing L, et al. Salvianolic acid B-loaded chitosan/hydroxyapatite scaffolds promotes the repair of segmental bone defect by angiogenesis and osteogenesis[J]. Int J Nanomedicine, 2019, 14:8271-8284.
|
30 |
Shangguan WJ, Zhang YH, Li ZC, et al. Naringin inhibits vascular endothelial cell apoptosis via endoplasmic reticulum stress-and mitochondrial-mediated pathways and promotes intraosseous angiogenesis in ovariectomized rats[J]. Int J Mol Med, 2017, 40(6):1741-1749.
|
31 |
Qiu B, Xu X, Yi P, et al. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-κB and miR-143/ROCK1/TLR9 signalling pathways[J]. J Cell Mol Med, 2020, 24(18):10855-10865.
|
32 |
Chen YW, Yeh CH, Shie MY. Stimulatory effects of the fast setting and suitable degrading Ca-Si-Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells[J]. J Mater Chem B, 2015, 3(35):7099-7108.
|
33 |
Chen Y, Shie M, Wu AY, et al. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement[J]. J Formos Med Assoc, 2017, 116(9):679-688.
|
34 |
Chen B, Liang Y, Zhang J, et al. Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg2+/curcumin from injectable self-healing hydrogels[J]. Theranostics, 2021, 11(12):5911-5925.
|
35 |
Sheu SY, Chen WS, Sun JS, et al. Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering[J] J Biomed Mater Res A, 2013, 101(12):3457-3466.
|
36 |
Hu W, Jing P, Wang L, et al. The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model[J]. BMC Complement Altern Med, 2015, 15(1):119. doi: 10.1186/s12906-015-0642-3.
|
37 |
Wu T, Chen Y, Liu W, et al. Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111:110757. doi: 10.1016/j.msec.2020.110757.
|
38 |
Wang QS, Cui YL, Gao LN, et al. Reduction of the pro-inflammatory response by tetrandrine-loading poly(L-lactic acid) films in vitro and in vivo[J]. J Biomed Mater Res A, 2014, 102(11):4098-4107.
|
39 |
He M, Qin Z, Liang X, et al. A pH-responsive mesoporous silica nanoparticles-based drug delivery system with controlled release of andrographolide for OA treatment[J]. Regen Biomater, 2021, 8(4):rbab020. doi: 10.1093/rb/rbab020.
|