1 |
Rudnicka E, Kruszewska J, Klicka K, et al. Premature ovarian insufficiency-aetiopathology, epidemiology, and diagnostic evaluation[J]. Prz Menopauzalny, 2018, 17(3):105-108.
|
2 |
Webber L, Davies M, Anderson R, et al. European society for human reproduction and embryology (ESHRE) guideline group on POI. ESHRE guideline: management of women with premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5):926-937.
|
3 |
Coulam CB, Adamson SC, Annegers JF. Incidence of premaure ovarian failure[J]. Obstet Gynecol, 1986, 67(4):604-606.
|
4 |
Luborsky JL, Meyer P, Sowers MF, et al. Premature menopause in a multi-ethnic population study of the menopause transition[J]. Hum Reprod, 2003, 18(1):199-206.
|
5 |
Lagergeren K, Hammar M, Nedstrand E, et al. The prevalence of primary ovarian insufficiency in Sweden; a national register study[J]. BMC Womens Health, 2018, 18(1):175.doi: 10.1186/s12905-018-0665-2.
|
6 |
Golezar S, Ramezani TF, Khazaei S, et al. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis[J]. Climacteric, 2019, 22(4):403-411.
|
7 |
Zhou Y, Zhou J, Xu X, et al. Matrigel/umbilical cord-derived mesenchymal stem cells promote granulosa cell proliferation and ovarian vascularization in a mouse model of premature ovarian failure[J]. Stem Cells Dev, 2021, 30(15):782-796.
|
8 |
Abd-Allah SH, Shalaby SM, Pasha HF, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits[J]. Cytotherapy, 2013, 15(1):64-75.
|
9 |
Xia X, Yin T, Yan J, et al. Mesenchymal stem cells enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation[J]. Cell Transplant, 2015, 24(10):1999-2010.
|
10 |
Wang Z, Wang Y, Yang T, et al. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice[J]. Stem Cell Res Ther, 2017, 8(1):11-25.
|
11 |
Cui L, Bao H, Zhu W, et al. hUMSCs Transplantation regulates AMPK/NR4A1 signaling axis to inhibit ovarian fibrosis in POI rats[J]. Stem Cell Rev Rep, 2023, 19(5):1449-1465.
|
12 |
Zhao Y, Ma J, Yi P, et al. Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice[J]. Stem Cell Res Ther, 2020, 11(1):466. doi: 10.1186/s13287-020-01972-5.
|
13 |
Huang BX, Qian CF, Ding CY, et al. Fetal liver mesenchymal stem cells restore ovarian function in prematureovarian insufficiency by targeting MT1[J]. Stem Cell Res Ther, 2019, 10(1):362. doi: 10.1186/s13287-019-1490-8.
|
14 |
Yin N, Zhao W, Luo Q, et al. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by Treg cells and associated cytokines[J]. Reprod Sci, 2018, 25(7):1073-1082.
|
15 |
Wang ZB, Hao JX, Meng TG, et al. Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in agedmice[J]. Aging, 2017, 9(12):2480-2488.
|
16 |
Esfandyari S, Chugh RM, Park HS, et al. Mesenchymal stem cells as a bio organ for treatment of female infertility[J]. Cells, 2020, 9(10):2253. doi: 10.3390/cells9102253.
|
17 |
Wang Z, Wei Q, Wang H, et al. Mesenchymal stem cell therapy using human umbilical cord in a rat model of autoimmune-induced premature ovarian failure[J]. Stem Cells Int, 2020, 2020:3249495. doi: 10.1155/2020/3249495.
|
18 |
Bao R, Xu P, Wang Y, et al. Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy[J]. Gynecol Endocrinol, 2018, 34(4):320-326.
|
19 |
Guo JQ, Gao X, Lin ZJ, et al. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause[J]. BMC Cell Biol, 2013, 14:18. doi: 10.1186/1471-2121-14-18.
|
20 |
Mahla RS. Stem cell applications in regenerative medicine and disease therapeutics[J]. Int J Cell Biol, 2016, 2016:6940283. doi: 10.1155/2016/6940283.
|
21 |
Li K, Peng L, Xing Q, et al. Transplantation of hESCs-derived neural progenitor cells alleviates secondary damage of thalamus after focal cerebral infarction in rats[J]. Stem Cells Transl Med, 2023, 16, 12(8): 553-568.
|
22 |
Davila JC, Cezar GG, Thiede M, et al. Use and application of stem cells in toxicology[J]. Toxicol Sci, 2004, 79(2):214-223.
|
23 |
Yoon SY, Yoon JA, Park M, et al. Recovery of ovarian function by human embryonic stem cell-derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice[J]. Stem Cell Res Ther, 2020, 26, 11(1):255. doi: 10.1186/s13287-020-01769-6.
|
24 |
Bahrehbar K, Khanjarpoor Malakhond M, Gholami S. Tracking of human embryonic stem cell-derived mesenchymal stem cells in premature ovarian failure model mice[J]. Biochem Biophys Res Commun, 2021, 577:6-11.
|
25 |
Bahrehbar K, Gholami S, Nazari Z, et al. Embryonic stem cells-derived mesenchymal stem cells do not differentiate into ovarian cells but improve ovarian function in POF mice[J]. Biochem Biophys Res Commun, 2022, 635:92-98.
|
26 |
Shin EY, Kim DS, Lee MJ, et al. Prevention of chemotherapy-induced premature ovarian insufficiency in mice by scaffold-based local delivery of human embryonic stem cell-derived mesenchymal progenitor cells[J]. Stem Cell Res Ther, 2021, 12(1):431-451.
|
27 |
Gadkari R, Zhao L, Teklemariam T, et al. Human embryonic stem cell derived-mesenchymal stem cells: an alternative mesenchymal stem cell source for regenerative medicine therapy[J]. Regen Med, 2014, 9(4):453-465.
|
28 |
Bahrehbar K, Rezazadeh Valojerdi M, Esfandiari F, et al. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure[J]. World J Stem Cells, 2020, 12(8):857-878.
|
29 |
Anchan R, Gerami-Naini B, Lindsey JS, et al. Efficient differentiation of steroidogenic and germ-like cells from epigenetically-related iPSCs derived from ovarian granulosa cells[J]. PLoS One, 2015, 10(3):e0119275. doi: 10.1371/journal.pone.0119275.
|
30 |
Zhang J, Li H, Wu Z, et al. Differentiation of rat iPS cells and ES cells into granulosa cell-like cells[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45(4):289-295.
|
31 |
Pierson Smela MD, Kramme CC, Fortuna PRJ, et al. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression[J]. Elife, 2023, 12::e83291. doi: 10.7554/eLife.83291.
|
32 |
Lu CY, Chen YA, Syu SH, et al. Generation of induced pluripotent stem cell line-NTUHi001-A from a premature ovarian failure patient with Turner's syndrome mosaicism[J]. Stem Cell Res, 2019, 37:101422. doi: 10.1016/j.scr.2019.101422.
|
33 |
Liu T, Li Q, Wang S, et al. Transplantation of ovarian granulosa-like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure[J]. Mol Med Rep, 2016, 13(6):5053-5058.
|
34 |
Liu T, Qin W, Huang Y, et al. Induction of estrogen-sensitive epithelial cells derived from human-induced pluripotent stem cells to repair ovarian function in a chemotherapy-induced mouse model of premature ovarian failure[J]. DNA Cell Biol, 2013, 32(12):685-698.
|
35 |
Elias KM, Ng NW, Dam KU, et al. Fertility restoration in mice with chemotherapy induced ovarian failure using differentiated iPSCs[J]. EBioMedicine, 2023, 94:104715. doi: 10.1016/j.ebiom.2023.104715.
|
36 |
Kanemura H, Go MJ, Shikamura M, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration[J]. PLoS One, 2014, 9(1):e85336. doi: 10.1371/journal.pone.0085336.
|
37 |
Lee AS, Tang C, Rao MS, et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies[J]. Nat Med, 2013, 19(8):998-1004.
|
38 |
Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67.
|
39 |
Park HS, Chugh RM, El Andaloussi A, et al. Human BM-MSC secretome enhances human granulosa cell proliferation and steroidogenesis and restores ovarian function in primary ovarian insufficiency mouse model[J]. Sci Rep, 2021, 11(1):4525. doi: 10.1038/s41598-021-84216-7.
|
40 |
Liu J, Zhang H, Zhang Y, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats[J]. Mol Cells, 2014, 37(12):865-872.
|
41 |
Chen X, Wang Q, Li X, et al. Heat shock pretreatment of mesenchymal stem cells for inhibiting the apoptosis of ovarian granulosa cells enhanced the repair effect on chemotherapy-induced premature ovarian failure[J]. Stem Cell Res Ther, 2018, 9(1):240. doi: 10.1186/s13287-018-0964-4.
|
42 |
El-Derany MO, Said RS, El-Demerdash E. Bone marrow-derived mesenchymal stem cells reverse radiotherapy-induced premature ovarian failure: emphasis on signal integration of TGF-β, Wnt/β-catenin and hippo pathways[J]. Stem Cell Rev Rep, 2021, 17(4):1429-1445.
|
43 |
Herraiz S, Buigues A, Díaz-García C, et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion[J]. Fertil Steril, 2018, 109(5):908-918.e2.
|
44 |
ArefNezhad R, Motedayyen H, Mohammadi A. Therapeutic aspects of mesenchymal stem cell-based cell therapy with a focus on human amniotic epithelial cells in multiple sclerosis: a mechanistic review[J]. Int J Stem Cells, 2021, 14(3):241-251.
|
45 |
Zhao YX, Chen SR, Su PP, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases[J]. Stem Cells Int, 2019, 2019:9071720. doi: 10.1155/2019/9071720.
|
46 |
Takehara Y, Yabuuchi A, Ezoe K, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function[J]. Lab Invest, 2013, 93(2):181-193.
|
47 |
Çil N, Mete GA. The effect of adipose-derived mesenchymal stem cell treatment on mTOR and p-mTOR expression in ovarian damage due to cyclophosphamide[J]. Reprod Toxicol, 2021, 103:71-78.
|
48 |
Varaa N, Azandeh S, Khodabandeh Z, et al. Wharton's jelly mesenchymal stem cell: various proto-cols for isolation and differentiation of hepatocyte-like cells; narrative review[J]. Iran J Med Sci, 2019, 44(6):437-448.
|
49 |
Kita K, Gauglitz GG, PhanTT, et al. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining mem-brane[J]. Stem Cells Dev, 2010, 19(4):491-502.
|
50 |
Shen J, Cao D, Sun JL. Ability of human umbilical cord mesenchymal stem cells to repair chemotherapy-induced premature ovarian failure[J]. World J Stem Cells, 2020, 12(4):277-287.
|
51 |
Wang S, Yu L, Sun M, et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure[J]. Biomed Res Int, 2013, 2013:690491. doi: 10.1155/2013/690491.
|
52 |
Zhang X, Zhang L, Li Y, et al. Human umbilical cord mesenchymal stem cells (hUCMSCs) promotes the recovery of ovarian function in a rat model of premature ovarian failure (POF)[J]. Gynecol Endocrinol, 2021, 37(4):353-357.
|
53 |
Jalalie L, Rezaee MA, Rezaie MJ, et al. Human umbilical cord mesenchymal stem cells improve morphometric and histopathologic changes of cyclophosphamide-injured ovarian follicles in mouse model of premature ovarian failure[J]. Acta Histochem, 2021, 123(1):151658. doi: 10.1016/j.acthis.2020.151658.
|
54 |
Li J, Mao Q, He J, et al. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism[J]. Stem Cell Res Ther, 2017, 8(1):55. doi: 10.1186/s13287-017-0514-5.
|
55 |
Jiao W, Mi X, Yang Y, et al. Mesenchymal stem cells combined with autocrosslinked hyaluronic acid improve mouse ovarian function by activating the PI3K-AKT pathway in a paracrine manner[J]. Stem Cell Res Ther, 2022, 2, 13(1):49. doi: 10.1186/s13287-022-02724-3.
|
56 |
Song D, Zhong Y, Qian C, et al. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model[J]. Biomed Res Int, 2016, 2016:2517514. doi: 10.1155/2016/2517514.
|
57 |
Deng T, He J, Yao Q, et al. Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism[J]. Reprod Sci, 2021, 28(6):1718-1732.
|
58 |
Lu X, Cui J, Cui L, et al. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice[J]. Stem Cell Res Ther, 2019, 22, 10(1):214. doi: 10.1186/s13287-019-1313-y.
|
59 |
Yin N, Wu C, Qiu J, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8 +CD28 − T cells[J]. Stem Cell Res Ther, 2020, 4, 11(1):49. doi: 10.1186/s13287-019-1537-x.
|
60 |
Zhang M, Xie T, Dai W, et al. Umbilical cord mesenchymal stem cells ameliorate premature ovarian insufficiency in rats[J]. Evid Based Complement Alternat Med, 2022, 2022:9228456. doi: 10.1155/2022/9228456.
|
61 |
Lv X, Guan C, Li Y, et al. Effects of single and multiple transplantations of human umbilical cord mesenchymal stem cells on the recovery of ovarian function in the treatment of premature ovarian failure in mice[J]. J Ovarian Res, 2021, 14(1):119. doi: 10.1186/s13048-021-00871-4.
|
62 |
Silvestris E, Cafforio P, Felici C, et al. Ddx4 + oogonial stem cells in postmenopausal women's ovaries: a controversial, undefined role[J]. Cells, 2019, 28, 8(7):650. doi: 10.3390/cells8070650.
|
63 |
Silvestris E, D'Oronzo S, Cafforio P, et al. In vitro generation of oocytes from ovarian stem cells (OSCs): in search of major evidence[J]. Int J Mol Sci, 2019, 20(24):6225. doi: 10.3390/ijms20246225.
|
64 |
Silvestris E, Minoia C, Guarini A, et al. Ovarian stem cells (OSCs) from the cryopreserved ovarian cortex: a potential for neo-oogenesis in women with cancer-treatment related infertility: a case report and a review of literature[J]. Curr Issues Mol Biol, 2022, 44(5):2309-2320.
|
65 |
Johnson J, Canning J, Kaneko T, et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary[J]. Nature, 2004, 428(6979):145-150.
|
66 |
Liu J, Shang D, Xiao Y, et al. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice[J]. J Biol Chem, 2017, 292(39):16003-16013.
|
67 |
Adib S, Valojerdi MR. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer[J]. Res Vet Sci, 2017, 114:378-387.
|
68 |
Dalman A, Totonchi M, Valojerdi MR. Establishment and characterization of human theca stem cells and their differentiation into theca progenitor cells[J]. J Cell Biochem, 2018, 119(12):9853-9865.
|
69 |
Stimpfel M, Cerkovnik P, Novakovic S, et al. Putative mesenchymal stem cells isolated from adult human ovaries[J]. J Assist Reprod Genet, 2014, 31(8):959-974.
|
70 |
De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy[J]. Nat Biotechnol, 2007, 25(1):100-106.
|
71 |
Xiao GY, Liu IH, Cheng CC, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice withpremature ovarian failure induced by chemotherapy[J]. PLoS One, 2014, 9(9):e106538. doi: 10.1371/journal.pone.0106538.
|
72 |
Liu T, Huang Y, Zhang J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model[J]. Stem Cells Dev, 2014, 23 (13):1548-1557.
|
73 |
Wang Z, Wang Y, Yang T, et al. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice[J]. Stem Cell Res Ther, 2017, 8 (1): 11. doi: 10.1186/s13287-016-0458-1.
|
74 |
Zhang Q, Bu S, Sun J, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage[J]. Stem Cell Res Ther, 2017, 8 (1): 270. doi: 10.1186/s13287-017-0721-0.
|
75 |
Ling L, Feng X, Wei T, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism[J]. Stem Cell Res Ther, 2019, 10(1):46. doi: 10.1186/s13287-019-1136-x.
|
76 |
Edessy M, Hosni HN, Shady Y, et al. Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure[J]. Acta Medica International, 2016, 3(1):19-23.
|
77 |
Igboeli P, El Andaloussi A, Sheikh U, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature[J]. J Med Case Rep, 2020, 14(1):108. doi: 10.1186/s13256-020-02426-5.
|
78 |
Mashayekhi M, Mirzadeh E, Chekini Z, et al. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human[J]. J Ovarian Res, 2021, 14(1):5. doi: 10.1186/s13048-020-00743-3.
|
79 |
Yan L, Wu Y, Li L, et al. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency[J]. Cell Prolif, 2020, 53(12):e12938. doi: 10.1111/cpr.12938.
|
80 |
Herraiz S, Romeu M, Buigues A, et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders[J]. Fertil Steril, 2018, 110(3):496-505.e1.
|
81 |
Gupta S, Lodha P, Karthick MS, et al. Role of autologous bone marrow-derived stem cell therapy for follicular recruitment in premature ovarian insufficiency: review of literature and a case report of world's first baby with ovarian autologous stem cell therapy in a perimenopausal woman of age 45 year[J]. J Hum Reprod Sci, 2018, 11(2):125-130.
|
82 |
Chen H, Wen X, Liu S, et al. Dissecting heterogeneity reveals a unique BAMBIhigh MFGE8high subpopulation of human UC-MSCs[J]. Adv Sci (Weinh), 2022, 10(1):e2202510. doi: 10.1002/advs.202202510.
|
83 |
Ding L, Yan G, Wang B, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility[J]. Sci China Life Sci, 2018, 61(12):1554-1565.
|
84 |
Zafardoust S, Kazemnejad S, Darzi M, et al. Intraovarian administration of autologous menstrual blood derived-mesenchymal stromal cells in women with premature ovarian failure[J]. Arch Med Res, 2023, 54(2):135-144.
|
85 |
Ling L, Feng X, Wei T, et al. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats[J]. Stem Cell Res Ther, 2017, 8(1):283-299.
|
86 |
Huang Y, Ma Z, Kuang X, et al. Sodium alginate-bioglass-encapsulated hAECs restore ovarian function in premature ovarian failure by stimulating angiogenic factor secretion[J]. Stem Cell Res Ther, 2021, 12(1):223. doi: 10.1186/s13287-021-02280-2.
|
87 |
Zhou Y, Zhou J, Xu X, et al. Matrigel/umbilical cord-derived mesenchymal stem cells promote granulosa cell proliferation and ovarian vascularization in a mouse model of premature ovarian failure[J]. Stem Cells Dev, 2021, 30(15):782-796.
|
88 |
Zhang S, Zhu D, Li Z, et al. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency[J]. Theranostics, 2021, 11(18):8894-8908.
|
89 |
Su J, Ding L, Cheng J, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5):1075-1086.
|
90 |
Yang Y, Lei L, Wang S, et al. Transplantation of umbilical cord-derived mesenchymal stem cells on a collagen scaffold improves ovarian function in a premature ovarian failure model of mice[J]. In Vitro Cell Dev Biol Anim, 2019, 55(4):302-311.
|
91 |
Zhang J, Yin H, Jiang H, et al. The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells[J]. Taiwan J Obstet Gynecol, 2020, 59(4):527-533.
|
92 |
Sun L, Li D, Song K, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro[J]. Sci Rep, 2017, 7(1):2552. doi: 10.1038/s41598-017-02786-x.
|
93 |
Yang Z, Du X, Wang C, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice[J]. Stem Cell Res Ther, 2019, 10(1):250. doi: 10.1186/s13287-019-1327-5.
|
94 |
Sun B, Ma Y, Wang F, et al. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis[J]. Stem Cell Res Ther, 2019, 10(1):360. doi: 10.1186/s13287-019-1442-3.
|
95 |
Xiao GY, Cheng CC, Chiang YS, et al. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy[J]. Sci Rep, 2016, 6:23120. doi: 10.1038/srep23120.
|
96 |
Li Z, Zhang M, Zheng J, et al. Human umbilical cord mesenchymal stem cell-derived exosomes improve ovarian function and proliferation of premature ovarian insufficiency by regulating the hippo signaling pathway[J]. Front Endocrinol (Lausanne), 2021, 12:1-17.
|
97 |
Huang B, Lu J, Ding C, et al. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD[J]. Stem Cell Res Ther, 2018, 9(1):216. doi: 10.1186/s13287-018-0953-7.
|
98 |
Yang M, Lin L, Sha C, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN[J]. Lab Invest, 2020, 100(3):342-352.
|
99 |
Pu X, Zhang L, Zhang P, et al. Human UC-MSC-derived exosomes facilitate ovarian renovation in rats with chemotherapy-induced premature ovarian insufficiency[J]. Front Endocrinol (Lausanne), 2023, 14:1205901. doi: 10.3389/fendo.2023.1205901.
|
100 |
Ding C, Zhu L, Shen H, et al. Exosomal miRNA-17-5p derived from human umbilicalcord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7[J]. Stem Cells, 2020, 38(9):1137-1148.
|
101 |
Ding C, Qian C, Hou S, et al. Exosomal miRNA-320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI[J]. Mol Ther Nucleic Acids, 2020, 21:37-50.
|
102 |
Thabet E, Yusuf A, Abdelmonsif DA, et al. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction[J]. Mol Hum Reprod, 2020, 26(12):906-919.
|
103 |
Liu M, Qiu Y, Xue Z, et al. Small extracellular vesicles derived from embryonic stem cells restore ovarian function of premature ovarian failure through PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):3. doi: 10.1186/s13287-019-1508-2.
|
104 |
Geng Z, Chen H, Zou G, et al. Human amniotic fluid mesenchymal stem cell-derived exosomes inhibit apoptosis in ovarian granulosa cell via miR-369-3p/YAF2/PDCD5/p53 pathway[J]. Oxid Med Cell Longev, 2022, 2022:3695848. doi: 10.1155/2022/3695848.
|
105 |
Liu C, Yin H, Jiang H, et al. Extracellular vesicles derived from mesenchymal stem cells recover fertility of premature ovarian insufficiency mice and the effects on their offspring[J]. Cell Transplant, 2020, 29:963689720923575. doi: 10.1177/0963689720923575.
|
106 |
Marinaro F, Macías-GarcíaB, Sánchez-Margallo FM, et al. Extracellular vesicles derived from endometrial human mesenchymal stem cells enhance embryo yield and quality in an aged murine model[J]. Biol Reprod, 2019, 100(5):1180-1192.
|