1 |
朱睿放, 张宇, 卢应梅. 小胶质细胞及其介导的神经炎症在帕金森病中的作用[J]. 南京医科大学学报(自然科学版), 2023, 43(4):569-576.
|
2 |
Ransohoff RM. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353(6301):777-783.
|
3 |
何欢, 吴霞. 脂多糖致帕金森病动物模型研究进展[J]. 药学研究, 2015, 34(9):530-533.
|
4 |
Liu H, Wang X, Chen L, et al. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice[J]. Nat Commun, 2021, 12(1):4646. doi: 10.1038/s41467-021-24915-x.
|
5 |
宋苏蒙, 王丽琨. 小胶质细胞极化M1/M2表型在脑出血后继发性损伤中的作用[J]. 中风与神经疾病杂志, 2021, 38(12):65-68.
|
6 |
刘家岐, 楚世峰, 张大永, 等. 小胶质细胞极化在帕金森病中的作用[J]. 中国药理学与毒理学杂志, 2019, 33(10):864.
|
7 |
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization—new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1):56-64.
|
8 |
Zhang Z, Zhang Z, Lu H, et al. Microglial polarization and inflammatory mediators after intracerebral hemorrhage[J]. Mol Neurobiol, 2017, 54(3):1874-1886.
|
9 |
Boche D, Perry VH, Nicoll JA. Review:activation patterns of microglia and their identification in the human brain[J]. Neuropathol Appl Neurobiol, 2013, 39(1):3-18.
|
10 |
Orihuela R, Mcpherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4):649-665.
|
11 |
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8):1191-1201.
|
12 |
Zeng F, Wu Y, Li X, et al. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia[J]. Angew Chem Int Ed Engl, 2018, 57(20): 5808-5812.
|
14 |
温洁,高颖颖.银杏素调节NF-κB/NLRP3/Caspase-1信号通路对高糖诱导肾小球内皮细胞焦亡的影响[J]. 河北医药, 2023, 45(15):2251-2255,2260.
|
15 |
Qiu Z, He Y, Ming H, et al. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes[J]. J Diabetes Res, 2019, 2019:8151836. doi: 10.1155/2019/8151836.
|
16 |
Sivasinprasansn S, Wikan N, Tocharus J, et al. Pelargonic acid vanillylamide and rosuvastatin protect against oxidized low-density lipoprotein-induced endothelial dysfunction by inhibiting the NF-κB/NLRP3 pathway and improving cell-cell junctions[J]. Chem Biol Interact, 2021, 345:109572. doi: 10.1016/j.cbi.2021.109572.
|
17 |
李洪涛,邓宇,王添乐,等.丹参新醌乙减轻ox-LDL诱导的内皮细胞损伤:基于抑制NF-κB/NLRP3信号通路介导的细胞焦亡[J]. 南方医科大学学报, 2023, 43(8):1425-1431.
|
18 |
ŠPANIĆ E, Langer Horvat L, HOF PR, et al. Role of microglial cells in Alzheimer's Disease tau propagation[J]. Front Aging Neurosci, 2019, 11:271. doi: 10.3389/fnagi.2019.00271.
|
19 |
Zhang L, Zheng H, Wu R, et al. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia[J]. Schizophr Res, 2019, 212:92-8.
|
20 |
Zhang L, Zheng H, Wu R, et al. Minocycline adjunctive treatment to risperidone for negative symptoms in schizophrenia: Association with pro-inflammatory cytokine levels[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 85:69-76.
|
21 |
Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation[J]. Lancet Neurol, 2020, 19(12):1023-1032.
|
22 |
Fereydouni N, Darroudi M, Movaffgh J, et al. Curcumin nanofibers for the purpose of wound healing[J]. J Cell Physiol, 2019, 234(5):5537-5554.
|
23 |
Mokhtari M, Razzaghi R, Momen-heravi M. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial[J]. Phytother Res, 2021, 35(4):2099-2107.
|
24 |
Li F, Shi Y, Liang J, et al. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model[J]. J Biomater Appl, 2019, 34(4):476-486.
|
25 |
Mittal A, Kumar N, Chauhan NS. Curcumin Encapsulated PEGylated Nanoliposomes: A Potential Anti-Infective Therapeutic Agent[J]. Indian J Microbiol, 2019, 59(3):336-343.
|
26 |
Mohanty C, Pradhan J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111:110751. doi: 10.1016/j.msec.2020.110751.
|
27 |
Lee HJ, Jeong M, Na YG, et al. An EGF- and curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound healing in diabetic rats[J]. Molecules, 2020, 25(20):4610. doi: 10.3390/molecules25204610.
|
28 |
Qiao P, Ma J, Wang Y, et al. Curcumin prevents neuroinflammation by inducing microglia to transform into the M2-phenotype via CaMKKβ-dependent activation of the AMP-activated protein kinase signal pathway[J]. Curr Alzheimer Res, 2020, 17(8):735-752.
|
29 |
张嘉维, 郑亚玲, 罗燕, 等.姜黄素调控TREM2-TLR4对脂多糖诱导的小胶质细胞炎症因子表达的影响 [J]. 中国临床神经科学, 2019, 27(4):386-394.
|
30 |
Ran Y, Su W, Gao F, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev, 2021, 2021:552127. doi: 10.1155/2021/1552127.
|
31 |
Lan C, Qian Y, Wang Y, et al. The protective role of curcumin in human dental pulp stem cells stimulated by lipopolysaccharide via inhibiting NF-κB p65 phosphorylation to suppress NLRP3 inflammasome activation[J]. Clin Oral Investig, 2023, 27(6):2875-2885.
|
32 |
段松堂, 卢威, 喻巍, 等. 绿原酸抑制NF-κB/NLRP3炎性体通路减轻LPS诱导小胶质细胞神经炎症损伤研究[J]. 中国药师, 2022, 25(5):758-764.
|
33 |
Ganesan P, Kim B, Ramalaingam P, et al. Antineuroinflammatory activities and neurotoxicological assessment of curcumin loaded solid lipid nanoparticles on LPS-Stimulated BV-2 Microglia cell models[J]. Molecules, 2019, 24(6):1170. doi: 10.3390/molecules24061170.
|
34 |
孙春斌, 应艺, 侯迥, 等. 三七总皂苷抑制PI3K/AKT/mTOR信号通路激活自噬缓解小鼠肺纤维化的实验研究[J]. 时珍国医国药, 2020, 31(12):2872-2876.
|
35 |
Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications[J]. Nat Rev Mol Cell Biol, 2020, 21 (11):678-695.
|
36 |
Wang Z, Gao C, Zhang L, et al. RETRACTED: Hesperidin methylchalcone (HMC) hinders amyloid-β induced Alzheimer's disease by attenuating cholinesterase activity, macromolecular damages, oxidative stress and apoptosis via regulating NF-κB and Nrf2/HO-1 pathways[J]. Int J Biol Macromol. 2023, 233 :123169. doi: 10.1016/j.ijbiomac.2023.123169.
|
37 |
Hu P, Li K, Peng XX, et al. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis[J]. Front Immunol, 2023, 14:1233652. doi: 10.3389/fimmu.2023.1233652.
|