1 |
Dinardo CD, Erba HP, Freeman SD, et al. Acute myeloid leukaemia[J]. Lancet, 2023, 401(10393):2073-2086.
|
2 |
Hokland P, Fernández, Ii, Freeman SD, et al. AML in the elderly-A global view[J]. Br J Haematol, 2023, 203(5):760-773.
|
3 |
Wang BH, Guan W, Lv N, et al. Genetic features and efficacy of decitabine-based chemotherapy in elderly patients with acute myeloid leukemia[J]. Hematology, 2021, 26(1):371-379.
|
4 |
Stetson LC, Balasubramanian D, Ribeiro SP, et al. Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression[J]. Leukemia, 2021, 35(10):2799-2812.
|
5 |
Chen DW, Fan JM, Schrey JM, et al. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche[J]. Leukemia, 2024, 38(4):741-750.
|
6 |
Zhang ZY, Deng C, Zhu P, et al. Single-cell RNA-seq reveals a microenvironment and an exhaustion state of T/NK cells in acute myeloid leukemia[J]. Cancer Sci, 2023, 114(10):3873-3883.
|
7 |
Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
|
8 |
Isobe T, Kucinski I, Barile M, et al. Preleukemic single-cell landscapes reveal mutation-specific mechanisms and gene programs predictive of AML patient outcomes[J]. Cell Genom, 2023, 3(12):100426. doi: 10.1016/j.xgen.2023.100426.
|
9 |
Moore JA, Mistry JJ, Hellmich C, et al. LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation[J]. J Clin Invest, 2022, 132(5):e153157. doi: 10.1172/JCI153157.
|
10 |
Chan CP, Kok KH, Jin DY. Human T-Cell leukemia virus type 1 infection and adult T-cell leukemia[J]. Adv Exp Med Biol, 2017, 1018:147-166.
|
11 |
Barbier V, Erbani J, Fiveash C, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance[J]. Nat Commun, 2020, 11(1):2042. doi: 10.1038/s41467-020-15817-5.
|
12 |
Chen X, Zhu H, Qiao C, et al. Next-generation sequencing reveals gene mutations landscape and clonal evolution in patients with acute myeloid leukemia[J]. Hematology, 2021, 26(1):111-122.
|
13 |
Song MZ, Zhang T, Yang DD, et al. Chromosomal aberrations and prognostic analysis of secondary acute myeloid leukemia-a retrospective study[J]. PeerJ, 2023, 11:e15333. doi: 10.7717/peerj.15333.
|
14 |
Pastore F, Pastore A, Rothenberg-Thurley M, et al. Molecular profiling of patients with cytogenetically normal acute myeloid leukemia and hyperleukocytosis[J]. Cancer, 2022, 128(24):4213-4222.
|
15 |
Cheng PL, Hsiao TH, Chen CH, et al. Chemoresistance in acute myeloid leukemia:an alternative single-cell RNA sequencing approach[J]. Hematol Oncol, 2023, 41(3):499-509.
|
16 |
Zeng AGX, Bansal S, Jin LQ, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia[J]. Nat Med, 2022, 28(6):1212-1223.
|
17 |
Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing[J]. Mol Cell, 2015, 58(4):610-620.
|
18 |
Su YJ, Zhang XQ, Liang YC, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq to unravel the molecular mechanisms underlying the immune microenvironment in the development of intestinal-type gastric cancer[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1):166849. doi: 10.1016/j.bbadis.2023.166849.
|
19 |
Goyal B, Yadav SRM, Awasthee N, et al. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2):188502. doi: 10.1016/j.bbcan.2021.188502.
|
20 |
Sheng XF, Hong LL, Li H, et al. Long non-coding RNA MALAT1 modulate cell migration, proliferation and apoptosis by sponging microRNA-146a to regulate CXCR4 expression in acute myeloid leukemia[J]. Hematology, 2021, 26(1):43-52.
|
21 |
Ni IB, Ching NC, Meng CK, et al. Translocation t(11;14) (q13;q32) and genomic imbalances in multi-ethnic multiple myeloma patients: a Malaysian study[J]. Hematol Rep, 2012, 4(3):e19. doi: 10.4081/hr.2012.e19.
|
22 |
Zhang SS, Cai ZG, Li H. AHNAKs roles in physiology and malignant tumors[J]. Front Oncol, 2023, 13:1258951. doi: 10.3389/fonc.2023.1258951.
|
23 |
Xu M, Wen JL, Xu QD, et al. AHNAK2 promotes the progression of differentiated thyroid cancer through PI3K/AKT signaling pathway[J]. Curr Cancer Drug Targets, 2024, 24(2):220-229.
|
24 |
Lee IH, Sohn M, Lim HJ, et al. Ahnak functions as a tumor suppressor via modulation of TGFβ/Smad signaling pathway[J]. Oncogene, 2014, 33(38):4675-4684.
|
25 |
Sohn M, Shin S, Yoo JY, et al. Ahnak promotes tumor metastasis through transforming growth factor-β-mediated epithelial-mesenchymal transition[J]. Sci Rep, 2018, 8(1):14379. doi: 10.1038/s41598-018-32796-2.
|
26 |
Dumitru CA, Bankfalvi A, Gu X, et al. AHNAK and inflammatory markers predict poor survival in laryngeal carcinoma[J]. PLoS One, 2013, 8(2):e56420. doi: 10.1371/journal.pone.0056420.
|
27 |
Xie ZY, Lun Y, Li X, et al. Bioinformatics analysis of the clinical value and potential mechanisms of AHNAK2 in papillary thyroid carcinoma[J]. Aging, 2020, 12(18):18163-18180.
|
28 |
Leong S, Nunez AC, Lin MZ, et al. iTRAQ-based proteomic profiling of breast cancer cell response to doxorubicin and TRAIL[J]. J Proteome Res, 2012, 11(7):3561-3572.
|
29 |
Guo RQ, Lü MD, Cao FJ, et al. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment[J]. Biomark Res, 2021, 9(1):15. doi: 10.1186/s40364-021-00265-0.
|