1 |
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1):68.doi: 10.1186/s13287-019-1165-5.
|
2 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
3 |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
4 |
Qin Z, Sun L, Sun X, et al. Reprogramming of a human induced pluripotent stem cell line from a Marfan syndrome patient harboring a heterozygous mutation of c.2939G > A in FBN1 gene[J]. Stem Cell Res, 2021, 51:102163.doi: 10.1016/j.scr.2021.102163.
|
5 |
Ling C, Liu Z, Song M, et al. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells[J]. Protein Cell, 2019, 10(4):249-271.
|
6 |
Bang JS, Choi NY, Lee M, et al. Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts[J]. Anim Cells Syst (Seoul), 2018, 22(2):132-139.
|
7 |
Lo Sardo V, Chubukov P, Ferguson W, et al. Unveiling the role of the most impactful cardiovascular risk locus through haplotype editing[J]. Cell, 2018, 175(7):1796-810. e20.
|
8 |
Acun A, Zorlutuna P. CRISPR/Cas9 edited hiPSC-based vascular tissues to model aging and disease-dependent impairment[J]. Tissue Eng Part A, 2019, 25(9-10):759-772.
|
9 |
Malankhanova TB, Malakhova AA, Medvedev SP, et al. Modern genome editing technologies in Huntington's disease research[J]. J Huntingtons Dis, 2017, 6(1):19-31.
|
10 |
Lee S, Kim JE, Johnson BA, et al. Direct reprogramming into endothelial cells: a new source for vascular regeneration[J]. Regen Med, 2017, 12(4):317-320.
|
11 |
Zhou D, Feng H, Yang Y, et al. hiPSC modeling of lineage-specific smooth muscle cell defects caused by TGFBR1A230T variant, and its therapeutic implications for Loeys-Dietz syndrome[J]. Circulation, 2021, 144(14):1145-1159.
|
12 |
Hu J, Wang Y, Jiao J, et al. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration[J]. Biomaterials, 2015, 73:51-59.
|
13 |
Dash BC, Levi K, Schwan J, et al. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells[J]. Stem Cell Reports, 2016, 7(1):19-28.
|
14 |
Ji H, Atchison L, Chen Z, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells[J]. Biomaterials, 2016, 85:180-194.
|
15 |
Hirai H, Yang B, Garcia-Barrio MT, et al. Direct reprogramming of fibroblasts into smooth muscle-like cells with defined transcription factors-brief report[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9):2191-2197.
|
16 |
Cao N, Liang H, Huang J, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions[J]. Cell Res, 2013, 23(9):1119-1132.
|
17 |
Klein D. iPSCs-based generation of vascular cells:reprogramming approaches and applications[J]. Cell Mol Life Sci, 2018, 75(8):1411-1433.
|
18 |
Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo[J]. Nat Biotechnol, 2007, 25(3):317-318.
|
19 |
Ginsberg M, James D, Ding BS, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression[J]. Cell, 2012, 151(3):559-575.
|
20 |
Morita R, Suzuki M, Kasahara H, et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells[J]. Proc Natl Acad Sci U S A, 2015, 112(1):160-165.
|
21 |
Pugsley MK, Tabrizchi R. The vascular system. An overview of structure and function[J]. J Pharmacol Toxicol Methods, 2000, 44(2):333-340.
|
22 |
Pärsson H, Jönsson BA, Norgren L, et al. The effect of dextran 40 and Dazmegrel on early platelet deposition onto vascular grafts[J]. Vasa, 1990, 19(3):242-246.
|
23 |
Li G, Wang M, Caulk AW, et al. Chronic mTOR activation induces a degradative smooth muscle cell phenotype[J]. J Clin Invest, 2020, 130(3):1233-1251.
|
24 |
Kinnear C, Agrawal R, Loo C, et al. Everolimus rescues the phenotype of elastin insufficiency in patient induced pluripotent stem cell-derived vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2020, 40(5):1325-1339.
|
25 |
Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49(1):97-109.
|
26 |
Milewicz DM, Braverman AC, De Backer J, et al. Marfan syndrome[J]. Nat Rev Dis Primers, 2021, 7(1):64.doi: 10.1038/s41572-021-00298-7.
|
27 |
Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49(1):97-109.
|
28 |
Park JW, Yan L, Stoddard C, et al. Recapitulating and correcting marfan syndrome in a cellular model[J]. Int J Biol Sci, 2017, 13(5):588-603.
|
29 |
Meester JAN, Verstraeten A, Schepers D, et al. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome[J]. Ann Cardiothorac Surg, 2017, 6(6):582-594.
|
30 |
Kinnear C, Chang WY, Khattak S, et al. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells[J]. Stem Cells Transl Med, 2013, 2(1):2-15.
|
31 |
Yang B, Zhou W, Jiao J, et al. Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve[J]. Nat Commun, 2017, 8:15481.doi: 10.1038/ncomms15481.
|
32 |
Jiao J, Xiong W, Wang L, et al. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves[J]. EBioMedicine, 2016, 10:282-290.
|
33 |
Varga R, Eriksson M, Erdos MR, et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome[J]. Proc Natl Acad Sci U S A, 2006, 103(9):3250-3255.
|
34 |
Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome[J]. Nature, 2011, 472(7342):221-225.
|
35 |
Trillhaase A, Schmidt B, Märtens M, et al. The CAD risk locus 9p21 increases the risk of vascular calcification in an iPSC-derived VSMC model[J]. Stem Cell Res Ther, 2021, 12(1):166.doi: 10.1186/s13287-021-02229-5.
|
36 |
Toyohara T, Roudnicky F, Florido MHC, et al. Patient hiPSCs identify vascular smooth muscle arylacetamide deacetylase as protective against atherosclerosis[J]. Cell Stem Cell, 2020, 27(1):147-57. e7.
|
37 |
Tokairin K, Hamauchi S, Ito M, et al. Vascular smooth muscle cell derived from IPS cell of moyamoya disease - comparative characterization with endothelial cell transcriptome[J]. J Stroke Cerebrovasc Dis, 2020, 29(12):105305.doi: 10.1016/j.jstrokecerebrovasdis.2020.105305.
|
38 |
Hamauchi S, Shichinohe H, Uchino H, et al. Cellular functions and gene and protein expression profiles in endothelial cells derived from moyamoya disease-specific iPS cells[J]. PloS one, 2016, 11(9):e0163561.doi: 10.1371/journal.pone.0163561.
|
39 |
Lim RG, Quan C, Reyes-Ortiz AM, et al. Huntington's disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits[J]. Cell Rep, 2017, 19(7):1365-1377.
|
40 |
Sa S, Gu M, Chappell J, et al. Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity[J]. Am J Respir Crit Care Med, 2017, 195(7):930-941.
|
41 |
Ong SB, Lee WH, Shao NY, et al. Calpain inhibition restores autophagy and prevents mitochondrial fragmentation in a human iPSC model of diabetic endotheliopathy[J]. Stem Cell Reports,2019, 12(3):597-610.
|
42 |
Gu M, Shao NY, Sa S, et al. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers[J]. Cell stem cell, 2017, 20(4):490-504.e5.
|
43 |
Mojiri A, Walther BK, Jiang C, et al. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice[J]. Eur Heart J, 2021, 42(42):4352-4369.
|
44 |
Li Y, Terstappen GC, Zhang W. Differentiation of human induced pluripotent stem cells (hiPSC) into endothelial-type cells and establishment of an in vitro blood-brain barrier model[J]. Methods Mol Biol, 2021.doi: 10.1007/7651_2021_363. Online ahead of print.
|
45 |
Li Y, Xia Y, Zhu H, et al. Investigation of neurodevelopmental deficits of 22 q11.2 deletion syndrome with a patient-iPSC-derived blood-brain barrier model[J]. Cells, 2021, 10(10):2576. doi: 10.3390/cells10102576.
|
46 |
Park TE, Mustafaoglu N, Herland A, et al. Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies[J]. Nat Commun, 2019, 10(1):2621.doi: 10.1038/s41467-019-10588-0.
|
47 |
Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy[J]. Rev Cardiovasc Med, 2020, 21(3):315-319.
|
48 |
Ma Z, Li X, Fan R L Y, et al. A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4[J]. Stem Cell Reports, 2022, 17(3):538-555.
|
49 |
Liu T, Luo S, Libby P, et al. Cathepsin L-selective inhibitors:A potentially promising treatment for COVID-19 patients[J]. Pharmacol Ther, 2020, 213:107587.doi: 10.1016/j.pharmthera.2020.107587.
|
50 |
Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids[J]. Cell Stem Cell, 2020, 27(1):125-36. e7.
|
51 |
Kim K W, Shin Y J, Kim B M, et al. Modeling of endothelial cell dysfunction using human induced pluripotent stem cells derived from patients with end-stage renal disease[J]. Kidney Res Clin Pract, 2021, 40(4):698-711.
|
52 |
Hinson JT, Chopra A, Lowe A, et al. Integrative analysis of PRKAG2 cardiomyopathy iPS and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis[J]. Cell Rep, 2016, 17(12):3292-3304.
|
53 |
Hinson JT, Chopra A, Nafissi N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy[J]. Science, 2015, 349(6251):982-986.
|
54 |
Yadid M, Lind JU, Ardoña HAM, et al. Endothelial extracellular vesicles contain protective proteins and rescue ischemia-reperfusion injury in a human heart-on-chip[J]. Sci Transl Med, 2020, 12(565):eaax8005. doi: 10.1126/scitranslmed.aax8005.
|
55 |
Liu C, Oikonomopoulos A, Sayed N, et al. Modeling human diseases with induced pluripotent stem cells:from 2D to 3D and beyond[J]. Development, 2018, 145(5):dev156166. doi: 10.1242/dev.156166.
|
56 |
Takebe T, Wells JM. Organoids by design[J]. Science, 2019, 364(6444):956-959.
|
57 |
Ingram PN, Hind LE, Jiminez-Torres JA, et al. An accessible organotypic microvessel model using iPSC-derived endothelium[J]. Adv Healthc Mater, 2018, 7(2):10.1002/adhm.201700497. doi: 10.1002/adhm.201700497.
|
58 |
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
|
59 |
Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip:strategies for engineering organoids with functional vasculature[J]. Lab Chip, 2021, 21(3):473-488.
|
60 |
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5):432-441.
|
61 |
Pezzoli D, Di Paolo J, Kumra H, et al. Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds[J]. Biomaterials, 2018, 180:130-142.
|
62 |
Dash BC, Levi K, Schwan J, et al. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells[J]. Stem Cell Reports, 2016, 7(1):19-28.
|
63 |
Ellis MW, Luo J, Qyang Y. Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering[J]. Cell Mol Life Sci, 2019, 76(5):893-901.
|
64 |
Atchison L, Zhang H, Cao K, et al. A tissue engineered blood vessel model of hutchinson-gilford progeria syndrome using human iPSC-derived smooth muscle cells[J]. Sci Rep, 2017, 7(1):8168.doi: 10.1038/s41598-017-08632-4.
|
65 |
Atchison L, Abutaleb NO, Snyder-Mounts E, et al. iPSC-derived endothelial cells affect vascular function in a tissue-engineered blood vessel model of hutchinson-gilford progeria syndrome[J]. Stem Cell Reports, 2020, 14(2):325-337.
|
66 |
Campisi M, Shin Y, Osaki T, et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes[J]. Biomaterials, 2018, 180:117-129.
|
67 |
Vatine GD, Barrile R, Workman MJ, et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications[J]. Cell stem cell, 2019, 24(6):995-1005.e6.
|
68 |
Takebe T, Zhang B, Radisic M. Synergistic engineering:organoids meet organs-on-a-chip[J]. Cell stem cell, 2017, 21(3):297-300.
|
69 |
Sances S, Ho R, Vatine G, et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development[J]. Stem Cell Reports, 2018, 10(4):1222-1236.
|
70 |
Vila Cuenca M, Cochrane A, van den Hil FE, et al. Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells[J]. Stem Cell Reports, 2021, 16(9):2159-2168.
|
71 |
Ragelle H, Goncalves A, Kustermann S, et al. Organ-on-a-chip technologies for advanced blood-retinal barrier models[J]. J Ocul Pharmacol Ther, 2020, 36(1):30-41.
|
72 |
Tian P, Lennon R. The myriad possibility of kidney organoids[J]. Curr Opin Nephrol Hypertens, 2019, 28(3):211-218.
|
73 |
Roye Y, Bhattacharya R, Mou X, et al. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium[J]. Micromachines (Basel), 2021, 12(8):967. doi: 10.3390/mi12080967.
|
74 |
Pitrez PR, Estronca L, Monteiro LM, et al. Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13[J]. Nat Commun, 2020, 11(1):4110.doi: 10.1038/s41467-020-17901-2.
|
75 |
Abudupataer M, Zhu S, Yan S, et al. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease[J]. Elife, 2021, 10:e69310. doi: 10.7554/eLife.69310.
|
76 |
Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnol Adv, 2016, 34(4):422-434.
|
77 |
Itoh M, Mukae Y, Kitsuka T, et al. Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes[J]. Nat Commun, 2019, 10(1):2244.doi: 10.1038/s41467-019-10107-1.
|
78 |
Kawai Y, Tohyama S, Arai K, et al. Scaffold-free tubular engineered heart tissue from human induced pluripotent stem cells using Bio-3D printing technology in vivo[J]. Front Cardiovasc Med, 2021, 8:806215.doi: 10.3389/fcvm.2021.806215.
|
79 |
Ji S, Guvendiren M. Complex 3D bioprinting methods[J]. APL Bioeng, 2021, 5(1):011508.doi: 10.1063/5.0034901.
|
80 |
Li X, Dong T, Li Y, et al. Generation of a human iPSC line from a patient with Marfan syndrome caused by mutation in FBN1[J]. Stem Cell Res, 2019, 36:101414.doi: 10.1016/j.scr.2019.101414.
|
81 |
Klein S, Dvornik JL, Yarrabothula AR, et al. A Marfan syndrome human induced pluripotent stem cell line with a heterozygous FBN1 c.4082G>A mutation, ISMMSi002-B, for disease modeling[J]. Stem Cell Res, 2017, 23:73-76.
|
82 |
Shalhub S, Regalado ES, Guo DC, et al. The natural history of type B aortic dissection in patients with PRKG1 mutation c.530G>A (p.Arg177Gln)[J]. J Vasc Surg, 2019, 70(3):718-723.
|
83 |
Pan Z, Wang H, Wang H, et al. Generation of an induced pluripotent stem cell line from a patient carrying FBN1/c.6734 G > A mutation[J]. Stem Cell Res, 2021, 55:102459.doi: 10.1016/j.scr.2021.102459.
|
84 |
Ma B, Luo M, Yang H, et al. Generation of a human induced pluripotent stem cell line (NCCDFWi001-A) from a Marfan syndrome patient carrying two FBN1 variants (c.2613A > C and c.684_736 + 4del)[J]. Stem Cell Res, 2020, 42:101690.doi: 10.1016/j.scr.2019.101690.
|
85 |
Liu H, Tsui Y, Wang J, et al. Establishment of a Beals syndrome patient-derived human induced pluripotent stem cell line HELPi001-A[J]. Stem Cell Res, 2019, 40:101535.doi: 10.1016/j.scr.2019.101535.
|
86 |
Ghaffari M, Tahmasebi Birgani M, Kariminejad R, et al. Genotype-phenotype correlation and the size of microdeletion or microduplication of 7q11.23 region in patients with Williams-Beuren syndrome[J]. Ann Hum Genet, 2018, 82(6):469-476.
|
87 |
Pongpamorn P, Dahlmann J, Haase A, et al. Generation of three induced pluripotent stem cell lines (MHHi012-A, MHHi013-A, MHHi014-A) from a family with Loeys-Dietz syndrome carrying a heterozygous p.M253I (c.759G>A) mutation in the TGFBR1 gene[J]. Stem Cell Res, 2020, 43:101707.doi: 10.1016/j.scr.2020.101707.
|
88 |
Hu K, Li J, Zhu K, et al. Generation of an induced pluripotent stem cell line from a Loeys-Dietz syndrome patient with transforming growth factor-beta receptor-2 gene mutation[J]. Stem Cell Res, 2017, 20:115-117.
|
89 |
Gong J, Zhou D, Jiang L, et al. In vitro lineage-specific differentiation of vascular smooth muscle cells in response to SMAD3 deficiency:implications for SMAD3-related thoracic aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(7):1651-1663.
|
90 |
Jin P, Wang S, Jiang X, et al. Generation of human induced pluripotent stem cell line (WMUi001-A) from a patient with aortic dissection[J]. Stem Cell Res, 2020, 43:101730.doi: 10.1016/j.scr.2020.101730.
|
91 |
Jiao J, Tian W, Qiu P, et al. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells:Implications for bicuspid aortic valve-related aortopathy[J]. J Thorac Cardiovasc Surg, 2018, 156(2):515-522. e1.
|
92 |
Dong L, Zhang H, Quan Y, et al. Establishment and characterization of human induced pluripotent stem cell line (WMUi020-A) from a patient with bicuspid aortic valve aortopathy[J]. Stem Cell Res, 2021, 53:102260.doi: 10.1016/j.scr.2021.102260.
|
93 |
Mishra K, Junday K, Wong CMY, et al. Generation of VCCRIi001-A, a human induced pluripotent stem cell line, from a patient with spontaneous coronary artery dissection[J]. Stem Cell Res, 2019, 41:101584.doi: 10.1016/j.scr.2019.101584.
|
94 |
Chan XY, Black R, Dickerman K, et al. Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells[J]. Arterioscler Thromb Vasc Biol, 2015, 35(12):2677-2685.
|
95 |
Gorecka J, Gao X, Fereydooni A, et al. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing[J]. Regen Med, 2020, 15(2):1277-93.
|
96 |
Hitomi T, Habu T, Kobayashi H, et al. Downregulation of securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients[J]. Biochem Biophys Res Commun, 2013, 438(1):13-19.
|
97 |
Kimura Y, Shofuda T, Higuchi Y, et al. Human genomic safe harbors and the suicide gene-based safeguard system for iPSC-based cell therapy[J]. Stem Cells Transl Med, 2019, 8(7):627-38.
|
98 |
Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery[J]. Nat Rev Genet, 2019, 20(7):377-88.
|
99 |
Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells[J]. Int J Mol Sci, 2018, 19(4):930. doi: 10.3390/ijms19040930.
|
100 |
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models[J]. Adv Drug Deliv Rev, 2019, 140:3-11.
|