1 |
BLüHER M. Obesity: global epidemiology and pathogenesis[J]. Nat Rev Endocrinol, 2019, 15(5):288-298.
|
2 |
Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity[J]. N Engl J Med, 2017, 376(3):254-266.
|
3 |
Jokinen R, Pirnes-Karhu S, Pietiläinen KH, et al. Adipose tissue NAD-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health[J]. Redox Biol, 2017, 12:246-263.
|
4 |
Slade D. PARP and PARG inhibitors in cancer treatment[J]. Genes Dev, 2020, 34(5-6):360-394.
|
5 |
Szántó M, Gupte R, Kraus WL, et al. PARPs in lipid metabolism and related diseases[J]. Prog Lipid Res, 2021, 84:101117.doi: 10.1016/j.plipres.2021.101117.
|
6 |
Kraus WL. PARPs and ADP-ribosylation: 60 years on[J]. Genes Dev, 2020, 34(5-6):251-3.
|
7 |
Hottiger MO, Hassa PO, Lüscher B, et al. Toward a unified nomenclature for mammalian ADP-ribosyltransferases[J]. Trends Biochem Sci, 2010, 35(4):208-219.
|
8 |
Chambon P, Weill JD, Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme[J]. Biochem Biophys Res Commun,1963,11:39-43.
|
9 |
Cohen MS. Interplay between compartmentalized NAD(+) synthesis and consumption:a focus on the PARP family[J]. Genes Dev, 2020, 34(5-6):254-262.
|
10 |
Barkauskaite E, Jankevicius G, Ahel I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation[J]. Mol Cell, 2015, 58(6):935-946.
|
11 |
Feijs KL, Forst AH, Verheugd P, et al. Macrodomain-containing proteins:regulating new intracellular functions of mono(ADP-ribosyl)ation[J]. Nat Rev Mol Cell Biol, 2013, 14(7):443-451.
|
12 |
Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs[J]. Nat Rev Mol Cell Biol, 2012, 13(7):411-424.
|
13 |
Lüscher B, Bütepage M, Eckei L, et al. ADP-Ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease[J]. Chem Rev, 2018, 118(3):1092-1136.
|
14 |
BAI P. Biology of Poly (ADP-Ribose) polymerases:the factotums of cell maintenance[J]. Mol Cell, 2015, 58(6):947-958.
|
15 |
Bock FJ, Todorova TT, Chang P. RNA Regulation by Poly(ADP-Ribose) polymerases[J]. Mol Cell, 2015, 58(6):959-969.
|
16 |
Kim DS, Challa S, Jones A, et al. PARPs and ADP-ribosylation in RNA biology:from RNA expression and processing to protein translation and proteostasis[J]. Genes Dev, 2020, 34(5-6):302-320.
|
17 |
Cohen MS. Interplay between compartmentalized NAD synthesis and consumption:a focus on the PARP family[J]. Genes Dev, 2020, 34(5-6):254-262.
|
18 |
VERDIN E. NAD+ in aging, metabolism, and neurodegeneration[J]. Science (New York, N.Y.), 2015, 350(6265):1208-1213.
|
19 |
Yoshino J, Baur JA, Imai SI. NAD(+) intermediates:the biology and therapeutic potential of NMN and NR[J]. Cell Metab, 2018, 27(3):513-528.
|
20 |
Cantó C, Houtkooper RH, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metab, 2012, 15(6):838-847.
|
21 |
Jukarainen S, Heinonen S, Rämö JT, et al. Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-Discordant monozygotic twins[J]. J Clin Endocrinol Metab, 2016, 101(1):275-283.
|
22 |
Rappou E, Jukarainen S, Rinnankoski-Tuikka R, et al. Weight loss is associated with increased NAD(+)/SIRT1 expression but reduced PARP activity in white adipose tissue[J]. J Clin Endocrinol Metab, 2016, 101(3):1263-1273.
|
23 |
Bai P, Cantó C, Oudart H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation[J]. Cell Metab, 2011, 13(4):461-468.
|
24 |
Devalaraja-Narashimha K, Padanilam BJ. PARP1 deficiency exacerbates diet-induced obesity in mice[J]. J Endocrinol, 2010, 205(3):243-252.
|
25 |
Berglund ED, Li CY, Poffenberger G, et al. Glucose metabolism in vivo in four commonly used inbred mouse strains[J]. Diabetes, 2008, 57(7):1790-1799.
|
26 |
Huang D, Camacho CV, Setlem R, et al. Functional Interplay between histone H2B ADP-ribosylation and phosphorylation controls adipogenesis[J]. Mol Cell, 2020, 79(6):934-949. e14.
|
27 |
Chouchani ET, Kajimura S. Metabolic adaptation and maladaptation in adipose tissue[J]. Nat Metab, 2019, 1(2):189-200.
|
28 |
Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells[J]. World J Stem Cells, 2014, 6(1):33-42.
|
29 |
Ghaben AL, Scherer PE. Adipogenesis and metabolic health[J]. Nat Rev Mol Cell Biol, 2019, 20(4):242-258.
|
30 |
Smulson ME, Kang VH, Ntambi JM, et al. Requirement for the expression of poly(ADP-ribose) polymerase during the early stages of differentiation of 3T3-L1 preadipocytes, as studied by antisense RNA induction[J]. J Biol Chem, 1995, 270(1):119-127.
|
31 |
Bai P, Houten SM, Huber A, et al. Poly(ADP-ribose) polymerase-2 [corrected] controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma [corrected] heterodimer[J]. J Biol Chem, 2007, 282(52):37738-37746.
|
32 |
Erener S, Mirsaidi A, Hesse M, et al. ARTD1 deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation[J]. FASEB J, 2012, 26(6):2631-2638.
|
33 |
Lehmann M, Pirinen E, Mirsaidi A, et al. ARTD1-induced poly-ADP-ribose formation enhances PPARgamma ligand binding and co-factor exchange[J]. Nucleic Acids Res, 2015, 43(1):129-142.
|
34 |
Luo X, Ryu KW, Kim DS, et al. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPbeta and Modulating Its Transcriptional Activity[J]. Mol Cell, 2017, 65(2):260-271.
|
35 |
Ryu KW, Nandu T, Kim J, et al. Metabolic regulation of transcription through compartmentalized NAD(+) biosynthesis[J]. Science, 2018, 360(6389):eaan5780. doi: 10.1126/science.aan5780.
|
36 |
Szanto M, Bai P. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism[J]. Genes Dev, 2020, 34(5-6):321-340.
|
37 |
Bai P, Canto C, Brunyanszki A, et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure[J]. Cell Metab, 2011, 13(4):450-460.
|
38 |
Nagy L, Rauch B, Balla N, et al. Olaparib induces browning of in vitro cultures of human primary white adipocytes[J]. Biochem Pharmacol, 2019, 167:76-85.
|
39 |
Yeh TY, Sbodio JI, Tsun ZY, et al. Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase[J]. Biochem J, 2007, 402(2):279-290.
|
40 |
Guo HL, Zhang C, Liu Q, et al. The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation[J]. Cell Res, 2012, 22(8):1246-1257.
|
41 |
Marton J, Fodor T, Nagy L, et al. PARP10 (ARTD10) modulates mitochondrial function[J]. PLoS One, 2018, 13(1):e0187789.doi: 10.1371/journal.pone.0187789.
|
42 |
Iansante V, Choy PM, Fung SW, et al. PARP14 promotes the warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation[J]. Nat Commun, 2015, 6:7882.doi: 10.1038/ncomms8882.
|