1 |
Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals[J]. Science, 2010, 327(5965):542-545.
|
2 |
Naik PP, Birbrair A, Bhutia SK. Mitophagy-driven metabolic switch reprograms stem cell fate[J]. Cell Mol Life Sci, 2019, 76(1):27-43.
|
3 |
Wang TW, Strongberg GP, Whitney JT, et al. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones[J]. J Comp Neurol, 2006, 497(1):88-100.
|
4 |
Seri B, Garcıa-Verdugo JM, McEwen BS, et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus[J]. J Neurosci, 2001, 21(18):7153-7160.
|
5 |
Gage FH, Sally T. Neural stem cells:generating and regenerating the brain[J]. Neuron, 2013, 80(3):588-601.
|
6 |
Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment[J]. Nature, 1997, 386(6624):493-495.
|
7 |
van Praag H, Shubert T, Zhao C, et al. Exercise enhances learning and hippocampal neurogenesis in aged mice[J]. J Neurosci, 25(38):8680-8685.
|
8 |
Drapeau E, Mayo W, Aurousseau C, et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis[J]. Proc Natl Acad Sci U S A, 100(24):14385-14390.
|
9 |
Alvarez-Buylla A, Herrera DG, Wichterle H, et al. The subventricular zone: source of neuronal precursors for brain repair[J]. Prog Brain Res, 2000, 127: 1-11.
|
10 |
Breton-Provencher V, Lemasson M, Peralta MR 3rd, et al. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors[J]. J Neurosci, 2009, 29(48):15245-15257.
|
11 |
Gheusi G, Cremer H, McLean H, et al. Importance of newly generated neurons in the adult olfactory bulb for odor discrimination[J]. Proc Natl Acad Sci U S A, 2000, 97(4):1823-1828.
|
12 |
Andreotti JP, Paiva AE, Prazeres PHDM, et al. The role of natural killer cells in the uterine microenvironment during pregnancy[J]. Cell Mol Immunol, 2018, 15(11):941-943.
|
13 |
Azevedo PO, Paiva AE, Santos GSP, et al. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression[J]. Cancer Metastasis Rev, 2018, 37(4):779-790.
|
14 |
Guerra DAP, Paiva AE, Sena IFG, et al. Adipocytes role in the bone marrow niche[J]. Cytometry A, 2018, 93(2):167-171.
|
15 |
Paiva AE, Lousado L, Almeida VM, et al. Endothelial cells as precursors for osteoblasts in the metastatic prostate cancer bone[J].Neoplasia, 2017, 19(11): 928-931.
|
16 |
Lousado L, Prazeres PHDM, Andreotti JP, et al. Schwann cell precursors as a source for adrenal gland chromaffin cells[J]. Cell Death Dis, 2017, 8(10):e3072.
|
17 |
Rodrigues ACZ, Messi ML, Wang ZM, et al. The sympathetic nervous system regulates skeletal muscle motor innervation and acetylcholine receptor stability[J]. Acta Physiologica, 2019, 225(3): e13195.
|
18 |
Birbrair A. Stem cell microenvironments and beyond[J]. Adv Exp Med Biol, 2017, 1041:1-3.
|
19 |
Ming G, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions[J]. Neuron, 2011, 70(4): 687-702.
|
20 |
Ninkovic J, Götz M. How to make neurons—thoughts on the molecular logic of neurogenesis in the central nervous system[J]. Cell Tissue Res, 2015, 359(1):5-16.
|
21 |
Lehtinen MK, Bjornsson CS, Dymecki SM, et al. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy[J]. J Neurosci, 2013, 33(45):17553-17559.
|
22 |
Redzic ZB, Preston JE, Duncan JA, et al. The choroid plexus-cerebrospinal fluid system: from development to aging[J].Curr Top Dev Biol, 2005,71:1-52.
|
23 |
Johanson CE, Duncan JA 3rd, Klinge PM, et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease[J]. Cerebrospinal Fluid Res, 2008, 5(1):10.
|
24 |
Lehtinen MK, Zappaterra MW, Chen X, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells[J]. Neuron, 2011, 69(5): 893-905.
|
25 |
Silva-Vargas V, Maldonado-Soto AR, Mizrak D, et al. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells[J]. Cell Stem Cell, 2016, 19(5):643-652.
|
26 |
Sawamoto K, Wichterle H, Gonzalez-Perez O, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain[J]. Science, 2006, 311(5761):629-632.
|
27 |
Johansson PA, Irmler M, Acampora D, et al. The transcription factor Otx2 regulates choroid plexus development and function[J]. Development, 2013, 140(5):1055-1066.
|
28 |
Johansson PA, Cappello S, Götz M, et al. Stem cells niches during development—lessons from the cerebral cortex[J]. Curr Opin Neurobiol, 2010, 20(4):400-407.
|
29 |
Falcão AM, Marques F, Novais A, et al. The path from the choroid plexus to the subventricular zone: go with the flow[J]! Front Cell Neurosci, 2012, 6:34.
|
30 |
Stolp HB. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders[J]. Mol Cell Neurosci, 2013, 53:63-68.
|
31 |
Dziegielewska KM, Knott GW, Saunders NR. The nature and composition of the internal environment of the developing brain[J]. Cell Mol Neurobiol, 2000, 20(1):41-56.
|
32 |
Delgado AC, Ferrón SR, Vicente D, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction[J]. Neuron, 2014, 83(3):572-585.
|
33 |
Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond[J]. Cell Mol Life Sci, 2012, 69(17):2863-2878.
|
34 |
Petrik D, Myoga MH, Grade S, et al. Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner[J]. Cell Stem Cell, 2018, 22(6):865-878.e8.
|
35 |
Birbrair A, Borges IDT, Gilson Sena IF, et al. How plastic are pericytes?[J]. Stem Cells Dev, 2017, 26(14):1013-1019.
|
36 |
Dias DO, Kim H, Holl D, et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury[J]. Cell, 2018, 173(1):153-165.e22.
|
37 |
Zhou Y, Bond AM, Shade JE, et al. Autocrine Mfge8 signaling prevents developmental exhaustion of the adult neural stem cell pool[J]. Cell Stem Cell, 2018, 23(3): 444-452.e4.
|
38 |
Shin J, Berg DA, Zhu Y, et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis[J]. Cell Stem Cell, 2015, 17(3):360-372.
|
39 |
Yoshida S, Sukeno M, Nabeshima Y, et al. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis[J].Science, 2007, 317(5845):1722-1726.
|
40 |
Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature[J]. Science, 2008, 322(5901):583-586.
|
41 |
Asada N, Kunisaki Y, Pierce H, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches[J]. Nat Cell Biol, 2017, 19(3):214-223.
|
42 |
Khan JA, Mendelson A, Kunisaki Y, et al. Fetal liver hematopoietic stem cell niches associate with portal vessels[J]. Science, 2016, 351(6269):176-180.
|
43 |
Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis[J]. J Comp Neurol, 2000, 425(4):479-494.
|
44 |
Shen Q, Wang Y, Kokovay E, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions[J]. Cell Stem Cell, 2008, 3(3):289-300.
|
45 |
Tavazoie M, Van der Veken L, Silva-Vargas V, et al. A specialized vascular niche for adult neural stem cells[J]. Cell Stem Cell, 2008, 3(3):279-288.
|
46 |
Culver JC, Vadakkan TJ, Dickinson ME. A specialized microvascular domain in the mouse neural stem cell niche[J]. PLoS One, 2013, 8(1): e53546.
|
47 |
Kazanis I, Lathia JD, Vadakkan TJ, et al. Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals[J]. Soc Neuroscience, 2010, 30(29):9771-9781.
|
48 |
Lacar B, Young SZ, Platel JC, et al. Gap junction-mediated calcium waves define communication networks among murine postnatal neural progenitor cells[J]. Eur J Neurosci, 2011, 34 (12):1895-1905.
|
49 |
Petrik D, Yun S, Latchney SE, et al. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires Cdk5[J]. PLoS One, 2013, 8(8):e72819.
|
50 |
Mignone JL, Kukekov V, Chiang AS, et al. Neural stem and progenitor cells in nestin-GFP transgenic mice[J]. J Comp Neurol, 2004, 469(3):311-324.
|
51 |
Kokovay E, Goderie S, Wang Y, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling[J]. Cell Stem Cell, 2010, 7(2):163-173.
|
52 |
Cao L, Jiao X, Zuzga DS, et al. VEGF links hippocampal activity with neurogenesis, learning and memory[J]. Nat Genet, 2004, 36(8):827-835.
|
53 |
Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2002, 99(18):11946-11950.
|
54 |
Licht T, Goshen I, Avital A, et al. Reversible modulations of neuronal plasticity by VEGF[J]. Proc Natl Acad Sci U S A, 2011, 108(12):5081-5086.
|
55 |
Udo H, Yoshida Y, Kino T, et al. Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120[J]. J Neurosci, 2008, 28(53): 14522-14536.
|
56 |
Pereira AC, Huddleston DE, Brickman AM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus[J]. Proc Natl Acad Sci U S A, 2007, 104(13):5638-5643.
|
57 |
Van der Borght K, Kóbor-Nyakas DE, Klauke K, et al. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis[J]. Hippocampus, 2009, 19(10):928-936.
|
58 |
Ottone C, Krusche B, Whitby A, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells[J]. Nat Cell Biol, 2014, 16(11):1045-1056.
|
59 |
Sato Y, Uchida Y, Hu J, et al. Soluble APP functions as a vascular niche signal that controls adult neural stem cell number[J]. Development, 2017, 144(15):2730-2736.
|
60 |
Azevedo PO, Lousado L, Paiva AE, et al. Endothelial cells maintain neural stem cells quiescent in their niche[J]. Neuroscience, 2017, 363: 62-65.
|
61 |
Bjornsson CS, Apostolopoulou M, Tian Y, et al. It takes a village: constructing the neurogenic niche[J]. Dev Cell, 2015, 32(4):435-446.
|
62 |
Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis[J]. Cell, 2008, 132(4):645-660.
|
63 |
Song J, Zhong C, Bonaguidi MA, et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision[J]. Nature, 2012, 489(7414):150-154.
|
64 |
Song J, Christian KM, Ming GL, et al. Modification of hippocampal circuitry by adult neurogenesis[J]. Dev Neurobiol, 2012, 72(7), 1032-1043.
|
65 |
Andreotti JP, Prazeres PHDM, Magno LAV, et al. Neurogenesis in the postnatal cerebellum after injury[J]. Int J Dev Neurosci, 2018, 67:33-36.
|
66 |
Song J, Sun J, Moss J, et al. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus[J]. Nat Neurosci, 2013, 16(12):1728-1730.
|
67 |
Bao H, Asrican B, Li W, et al. Long-range GABAergic inputs regulate neural stem cell quiescence and control adult hippocampal neurogenesis[J]. Cell Stem Cell, 2017, 21(5): 604-617.
|
68 |
Howell OW, Scharfman HE, Herzog H, et al. Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells[J]. J Neurochem, 2003, 86(3), 646-659.
|
69 |
Howell OW, Silva S, Scharfman HE, et al. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus[J]. Neurobiol Dis, 2007, 26(1): 174-188.
|
70 |
Cardoso A, Freitas-da-Costa P, Carvalho LS, et al. Seizure-induced changes in neuropeptide Y-containing cortical neurons: potential role for seizure threshold and epileptogenesis[J]. Epilepsy Behav, 2010, 19(4): 559-567.
|
71 |
Zaben M, Sheward WJ, Shtaya A. The neurotransmitter VIP expands the pool of symmetrically dividing postnatal dentate gyrus precursors via VPAC2 receptors or directs them toward a neuronal fate via VPAC1 receptors[J]. Stem Cells, 2009, 27(10):2539-2551.
|
72 |
Paul A, Chaker Z, Doetsch F, et al. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis[J]. Science, 2017, 356(6345):1383-1386.
|
73 |
Andreotti JP, Lousado L, Magno LAV, et al. Hypothalamic neurons take center stage in the neural stem cell niche[J]. Cell Stem Cell, 2017, 21(3):293-294.
|