1 |
Gras Navarro A, Björklund AT, Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors[J]. Front Immunol, 2015, 6:202.
|
2 |
Dotti G, Gottschalk S, Savoldo B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells[J]. Immunol Rev, 2014, 257(1):107-126.
|
3 |
Zhang G, Liu RZ, Zhu XE, et al. Retargeting NK-92 for anti-melanoma activity by a TCR-like single-domain antibody[J]. Immunol Cell Biol, 2013, 91(10): 615-624.
|
4 |
Mueller T, Uherek C, Maki G, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells[J]. Cancer Immunol Immunother, 2008, 57(3): 411-423.
|
5 |
Chu J, Deng Y, Benson DM, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma[J]. Leukemia, 2014, 28(4): 917-927.
|
6 |
Han JF, Chu JH, Chan WK, et al. CAR-Engineered NK cells targeting Wild-Type EGFR and EGFRvIII enhance killing of glioblastoma and Patient-Derived glioblastoma stem cells[J]. Sci Rep, 2015, 5:11483.
|
7 |
Schönfeld K, Sahm C, Zhang C, et al. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-Specific chimeric antigen receptor[J]. Mol Ther, 2015, 23(2): 330-338.
|
8 |
Chen KH, Wada M, Firor AE, et al. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies[J]. Oncotarget, 2016, 7(35): 56219-56232.
|
9 |
Jiang H, Zhang W, Shang P, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells[J]. Mol Oncol, 2014, 8(2): 297-310.
|
10 |
Boissel L, Betancura M, Wels WS, et al. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells[J]. Leuk Res, 2009, 33(9): 1255-1259.
|
11 |
Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
|
12 |
Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients[J]. J Clin Invest, 2011, 121(5):1822-1826.
|
13 |
Töpfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy[J]. J Immunol, 2015, 194(7):3201-3212.
|
14 |
Suck G, Odendahl M, Nowakowska P, et al. NK-92:an'off-the-shelf therapeutic'for adoptive natural killer cell-based cancer immunotherapy [J]. Cancer Immunol Immunother, 2016, 65(4):485-492.
|
15 |
Romanski A, Uherek C, Bug G, et al. CD19-CAR engineered NK- 92 cells are sufficient to overcome NK cell resistance in B-cell malignancies[J]. J Cell Mol Med, 2016, 20(7): 1287-1294.
|
16 |
Oelsner S, Friede ME, Zhang CC, et al. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma[J]. Cytotherapy, 2017, 19(2): 235-249.
|
17 |
Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells[J]. Blood, 2005, 106(1):376-383.
|
18 |
Li L, Liu LN, Feller S, et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method[J]. Cancer Gene Ther, 2010, 17(3):147-154.
|
19 |
Boissel L, Betancur M, Lu W, et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens[J]. Leuk Lymphoma, 2012, 53(5): 958-965.
|
20 |
Chu Y, Hochberg J, Yahr A, et al. Targeting CD20+ aggressive b-cell Non-Hodgkin lymphoma by Anti-CD20 CAR mRNA-Modified expanded natural killer cells in vitro and in NSG mice[J]. Cancer Immunol Res, 2015, 3(4):333-344.
|
21 |
Clemenceau B, Valsesia-Wittmann S, Jallas AC, et al. In vitro and in vivo comparison of lymphocytes transduced with a human CD16 or with a chimeric antigen receptor reveals potential Off-Target interactions due to the IgG2 CH2-CH3 CAR-Spacer [J]. Clin Dev Immunol, 2015, (2015): 1-13.
|
22 |
Zhang C, Burger MC, Jennewein L, et al. ErbB2/HER2-Specific NK cells for targeted therapy of glioblastoma[J]. J Natl Cancer Inst, 2016, 108(5).
|
23 |
Chen XL, Han JF, Chu JH, et al. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases[J]. Oncotarget, 2016, 7(19): 27764-27777.
|
24 |
Genßler S, Burger MC, Zhang C, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival[J]. Oncoimmunology, 2015, 5(4):e1119354.
|
25 |
Esser R, Mueller T, Stefes D, et al. NK cells engineered to Express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin[J]. J Cell Mol Med, 2012, 16(3): 569-581.
|
26 |
Altvater B, Landmeier S, Pscherer S, et al. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells[J]. Clinical Cancer Research, 2009, 15(15): 4857-4866.
|
27 |
Zhao Q, Ahmed M, Tassev DV, et al. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential [J]. Leukemia, 2015, 29(11): 2238-2247.
|
28 |
Imai C, Iwamoto S. Campana D genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells[J]. Blood, 2005, 106(1): 376-383.
|
29 |
Knorr DA, Bachanova V, Verneris MR. Clinical utility of natural killer cells in cancer therapy and transplantation[J]. Semin Immunol, 2014, 26(2): 161-172.
|
30 |
Ni Z, Knorr D, Bendzick L, et al. Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo[J]. Stem Cells, 2014, 32(4): 1021-1031.
|
31 |
Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-Derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2):181-192.e5.
|
32 |
Leung W. Use of NK cell activity in cure by transplant[J]. Br J Haematol, 2011, 155(1):14-29.
|
33 |
Parham P, Abi-Rached L, Matevosyan L, et al. Primate-specific regulation of natural killer cells[J]. J Med Primatol, 2010, 39(4):194-212.
|
34 |
Gong JH, Maki GK, Klingemann HG, et al. Characterization of a human cell line(NK-92)with phenotypical and functional characteristics of activated natural killer cells [J]. Leukemia, 1994, 8(4): 652-658.
|
35 |
Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation[J]. Front Immunol, 2013, 4:499.
|
36 |
Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92[J]. Cytotherapy, 2013, 15(12): 1563-1570.
|
37 |
Romanski A, Uherek C, Bug G, et al. CD19-CAR engineered NK- 92 cells are sufficient to overcome NK cell resistance in B-cell malignancies[J]. J Cell Mol Med, 2016, 20(7): 1287-1294.
|
38 |
Boissel L, Betancur-Boissel M, Lu W, et al. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity[J]. Oncoimmunology, 2013, 2(10): e26527.
|
39 |
Uherek C, Tonn T, Uherek B, et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction[J]. Blood, 2002, 100(4):1265-1273.
|
40 |
Fehniger T. Cooper MAHarnessing NK cell memory for cancer immunotherapy[J]. Trends Immunol, 2016, 37(12): 877-888.
|
41 |
Liu D, Tian S, Zhang K, et al. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV[J]. Protein Cell, 2017, 9(10): 902.
|
42 |
Maus MV, June CH. Zoom Zoom: racing CARs for multiple myeloma [J]. Clin Cancer Res, 2013, 19(8): 1917-1919.
|
43 |
Lapteva N, Parihar R, Rollins LA, et al. Large-scale culture and genetic modification of human natural killer cells for cellular therapy[J]. Methods Mol Biol, 2016, 1441:195-202.
|
44 |
Morsut L, Roybal KT, Xiong X, et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors[J]. Cell, 2016, 164(4):780-791.
|
45 |
Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy:Redirecting natural killer cell[J]. Biochim Biophys Acta Rev Cancer, 2018, 1869(2):200-215.
|
46 |
Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial[J]. Cytotherapy, 2008, 10(6): 625-632.
|
47 |
Motohashi S, Ishikawa A, Ishikawa E, et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer[J]. Clin Cancer Res, 2006, 12(20 Pt 1):6079-6086.
|
48 |
Geller MA, Cooley S, Judson PL, et al. A phase Ⅱ study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer[J]. Cytotherapy, 2011, 13(1): 98-107.
|
49 |
Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation[J]. Blood, 2015, 125(5):784-792.
|
50 |
Lundqvist A, Berg M, Smith A, et al. Bortezomib treatment to potentiate the anti-tumor immunity of ex-vivo expanded adoptively infused autologous natural killer cells[J]. J Cancer, 2011, 2(1):383-385.
|