切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 139 -147. doi: 10.3877/cma.j.issn.2095-1221.2025.03.002

论著

SMC4 在低氧诱导的肺动脉高压中通过NEMO/NLRP3 通路诱导细胞焦亡
张佳男1, 王焕亮2, 王文婷2, 陈津,1   
  1. 1. 570311 海口,海南医科大学第二附属医院临床医学研究所
    2. 570311 海口,海南医科大学第二附属医院麻醉科
  • 收稿日期:2024-12-13 出版日期:2025-06-01
  • 通信作者: 陈津
  • 基金资助:
    海南省自然科学基金青年基金项目(822QN469)国家自然科学基金地区项目(8236010254)

SMC4 induces cell pyroptosis through the NEMO/NLRP3 pathway in hypoxia induced pulmonary arterial hypertension

Jianan Zhang1, Huanliang Wang2, Wenting Wang2, Jin Chen,1   

  1. 1. Institute of Clinical Medicine,the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
    2. Department of Anesthesiology,the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
  • Received:2024-12-13 Published:2025-06-01
  • Corresponding author: Jin Chen
引用本文:

张佳男, 王焕亮, 王文婷, 陈津. SMC4 在低氧诱导的肺动脉高压中通过NEMO/NLRP3 通路诱导细胞焦亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 139-147.

Jianan Zhang, Huanliang Wang, Wenting Wang, Jin Chen. SMC4 induces cell pyroptosis through the NEMO/NLRP3 pathway in hypoxia induced pulmonary arterial hypertension[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(03): 139-147.

目的

探讨染色体结构维持蛋白4 (SMC4)对低氧性人源肺动脉平滑肌(hPASMC)焦亡的影响及调控机制。

方法

以hPASMCs 为实验对象,将细胞随机分为常氧组、低氧组、低氧+NC 组、低氧+si-SMC4 组,除常氧组细胞在37℃、5%CO2 条件下培养外,低氧组及低氧+si-SMC4 组均在3%O2,5%CO2 限制条件下培养24 h 建立低氧模型。使用Western blot 检测SMC4、以及焦亡相关蛋白,如白介素1β、GSDMD、GSDMD-N、NOD 样受体蛋白3(NLRP3)的表达水平;利用乳酸脱氢酶 (LDH)释放实验检测细胞培养液中分泌的LDH 释放量;利用细胞免疫荧光DAPI/PI 双染检测焦亡细胞比例。大鼠分为常氧组和10%O2 浓度低氧组,用血压监测及HE 染色判断动物模型是否成功,组织免疫荧光用于检测SMC4 组织定位,Western blot 检测各组织器官SMC4 的差异表达,两组间比较采用独立样本t 检验,多组间比较采用单因素方差分析,组间两两比较采用SNK-q 检验。

结果

与常氧组相比,低氧组大鼠肺组织SMC4 蛋白表达量升高 (0.86 ± 0.06 比0.75 ± 0.05,P < 0.05),SMC4 定位在肺血管平滑肌层;与常氧组比较,低氧组肺动脉[(30.33 ± 3.49)比 (13.52 ± 2.34)μm]增厚、NEMO (0.77 ± 0.14比0.31 ± 0.09)、细胞焦亡相关蛋白NLRP3 (1.04 ± 0.15 比0.54 ± 0.22)、GSDMD (1.34 ± 0.32 比0.86 ± 0.34)、GSDMD-N (0.90 ± 0.11 比0.45 ± 0.02)、IL-1β (3.15 ± 0.56 比0.53 ± 0.06)表达、LDH 释放量百分比 (71.69 ± 10.36 比19.94 ± 3.54)、PI 阳性细胞 (4.81 ± 0.64 比2.18 ± 0.31)均升高 (P < 0.05)。低氧+si-SMC4 组可以逆转上述影响。

结论

SMC4 在低氧性肺动脉高压中上调,激活细胞焦亡相关蛋白表达,增加hPASMCs LDH 释放及PI 阳性细胞比例,敲低SMC4 后,上述改变得到逆转可能与NEMO 调控相关。

Objective

To investigate the effect and regulatory mechanism of chromosome structure maintenance protein 4 (SMC4) on hypoxemic human pulmonary artery smooth muscle(hPASMC)pyroptosis.

Method

hPASMCs were used as experimental subjects, and the cells were randomly divided into normoxic group, hypoxic group, hypoxic + NC group, and hypoxic + si-SMC4 group. Except for the normoxic group, which was cultured under 37 ℃ and 5% CO2 conditions,the hypoxic group and hypoxic + si-SMC4 group were cultured for 24 hours under 3%O2 and 5%CO2 restrictions to establish a hypoxic model. Western blot was used to detect the expression levels of SMC4 and apoptosis related proteins such as interleukin-1β, GSDMD, GSDMD-N, and NOD like receptor protein 3 (NLRP3). Lactate dehydrogenase (LDH) release assay was used to detect the release of LDH release in cell culture medium. Cell immunofluorescence DAPI/PI double staining to was used to detect the proportion of pyroptosis cells. Rats were divided into normoxic group and 10% O2 low oxygen group. Blood pressure monitoring and HE staining were used to determine the success of the animal model. Tissue immunofluorescence was used to detect SMC4 tissue localization,and Western blot was used to detect differential expression of SMC4 in various tissues and organs.Independent sample t-test was used for comparison between the two groups; Multiple groups were analyzed using one- way ANOVA, and pairwise comparisons were processed using SNK-q test.

Result

Compared with the normoxic group, the expression level of SMC4 protein was increased in the lung tissue of rats in the hypoxic group (0.86 ± 0.06 vs 0.75 ± 0.05, P < 0.05), and SMC4 was localized in the smooth muscle layer of pulmonary vessels. Compared with the normoxic group, the hypoxic group showed increased pulmonary artery thickness [(30.33 ± 3.49 ) vs (13.52 ± 2.34) μm],NEMO (0.77 ± 0.14 vs 0.31 ± 0.09), NLRP3 (1.04 ± 0.15 vs 0.54 ± 0.22), GSDMD (1.34 ± 0.32 vs 0.86 ± 0.34), GSDMD-N (0.90 ± 0.11 vs 0.45 ± 0.02), IL-1β (3.15 ± 0.56 vs 0.53 ± 0.06)expression, percentage of LDH release (71.69 ± 10.36 vs 19.94 ± 3.54), and PI positive cells (4.81 ±0.64 vs 2.18 ± 0.31), P < 0.05. The low oxygen+si-SMC4 group can reverse the above effects.

Conclusion

SMC4 is upregulated in hypoxic pulmonary hypertension, activates the expression of cell apoptosis related proteins, and increases the release of LDH from hPASMCs, and increasing the proportion of PI positive cells. Knocking down SMC4 may reverse these changes, which may be related to NEMO regulation.

图1 低氧大鼠模型血流动力学示意图及组织切片 注:a ~ b 图为大鼠右心室收缩压 (RVSP)电信号及统计结果;c 图为右心肥厚指数统计;d 图为荧光倒置显微镜下观察低氧模型大鼠HE 染色结果(×10),箭头所指为直径< 100 μm 血管;e 图为常氧与低氧组血管壁厚度比较,低氧组发生了血管重构,**P < 0.01,***P < 0.001 ,n = 4
图2 低氧大鼠肺组织中SMC4 蛋白表达及比较 注:a 图为Western blot 检测心、肝、肺、肾组织;b 图为SMC4 在心、肝、肺、肾组织中表达结果比较,*P < 0.05,n = 4
图3 荧光倒置显微镜下观察常氧、低氧组大鼠肺血管SMC4 组织 (Cy3 红色荧光,× 20) 注:常氧、低氧组大鼠肺血管SMC4 组织免疫荧光 (蓝色:DAPI、红色:SMC4、绿色:α-SMA),标尺为50 μm 主要定位在肺动脉平滑肌层的免疫荧光照片
图4 Western blot 检测低氧对肺动脉平滑肌细胞SMC4、NLRP3、GSDMD、IL-1β 蛋白表达影响及统计结果 注:*P < 0.05,**P < 0.01,n = 3
图5 Western blot 检测常氧组、si-1 组、si-2 组和si-3 组SMC4 表达水平 注:*P < 0.05,n = 3
图6 常氧、低氧、低氧+NC 和低氧+si-SMC4 组PI 阳性细胞比较 注:**P < 0.01,n = 3
图7 荧光倒置显微镜下观察hPASMC 细胞 (Hoechst 33342/PI 染色,×20)
图8 常氧、低氧、低氧+NC 和低氧+si-SMC4 组LDH 释放量比较 注:**P < 0.01,**P < 0.01,ns 为差异无统计学意义,n = 4
图9 Western blot 检测NEMO、NLRP3、GSDMD、GSDMD-N 和IL-1β 蛋白表达水平 注:*P < 0.05,**P < 0.01,n = 3
1
Zhang M, Xin W, Yu Y, et al. Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension[J]. J Mol Cell Cardiol, 2020, 138:23-33.
2
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-mesenchymal transition in pulmonary arterial hypertension[J]. Antioxid Redox Signal, 2021, 34(12):891-914.
3
Kazmirczak F, Vogel NT, Prisco SZ. Ferroptosis mediated inflammation promotes pulmonary hypertension[J]. Circ Res, 2024, 135(11):1067-1083.
4
Wu D, Jansen-van Vuuren RD, Dasgupta A. Novel Drp1 GTPase inhibitor, drpitor1a: efficacy in pulmonary hypertension[J].Hypertension, 2024, 81(10):2189-2201.
5
Zhang JJ, Mao M, Shao MM, et al. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review[J].Phytomedicine. 2024, 128:155535. doi: 10.1016/j.phymed.2024.155535.
6
Chu LH, Indramohan M, Ratsimandresy RA, et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the noncanonical inflammasome in macrophages[J]. Nat Commun, 2018,9(1):996. doi: 10.1038/s41467-018-03409-3.
7
Jiang Y, Liu H, Yu H, et al. Circular RNA calm4 regulates hypoxia- induced pulmonary arterial smooth muscle cells pyroptosis via the Circ-Calm4/miR-124-3p/PDCD6 Axis[J]. Arterioscler Thromb Vasc Biol. 2021, 41(5):1675-1693.
8
Zhu J, Zhou W, Yao Y, et al. Targeted positron emission tomography- tracked biomimetic codelivery synergistically amplifies ferroptosis and pyroptosis for inducing lung cancer regression and Anti-PD-L1 immunotherapy efficacy[J]. ACS Nano, 2024, 18(45):31401-31420.
9
He X, Wu Z, Jiang J, et al. Urolithin a protects against hypoxia-induced pulmonary hypertension by inhibiting pulmonary arterial smooth muscle cell pyroptosis via AMPK/NF-κB/NLRP3 Signaling[J]. Int J Mol Sci, 2024, 25(15):8246. doi: 10.3390/ijms25158246.
10
Mannini L, Cucco F, Quarantotti V, et al. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins[J].Sci Rep, 2015, 5:18472. doi: 10.1038/srep18472.
11
Ma RM, Yang F, Huang DP, et al. The prognostic value of the expression of SMC4 mRNA in breast cancer[J]. Dis Markers, 2019,2019:2183057. doi: 10.1155/2019/2183057.
12
Jiang L, Zhou J, Zhong D, et al. Overexpression of SMC4 activates TGFβ/Smad signaling and promotes aggressive phenotype in glioma cells[J]. Oncogenesis, 2017, 6(3):e301. doi: 10.1038/oncsis.2017.8.
13
Zhang C, Kuang M, Li M, et al. SMC4, which is essentially involved in lung development, is associated with lung adenocarcinoma progression[J]. Sci Rep, 2016, 6:34508. doi: 10.1038/srep34508.
14
Chen Y, Huang F, Deng L, et al. HIF-1-miR-219-SMC4 regulatory pathway promoting proliferation and migration of HCC under hypoxic condition[J]. Biomed Res Int, 2019, 2019:8983704. doi:10.1155/2019/8983704.
15
Wang Q, Wang C, Li N, et al. Condensin Smc4 promotes inflammatory innate immune response by epigenetically enhancing NEMO transcription[J]. J Autoimmun, 2018, 92:67-76.
16
Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy:new insights and translational implications[J]. Signal Transduct Target Ther, 2024, 9(1):53. doi: 10.1038/s41392-024-01757-9.
17
Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation[J]. Cell, 1995,81(4):495-504.
18
Yang Z, Pan X, Wu X, et al. TREM-1 induces pyroptosis in cardiomyocytes by activating NLRP3 inflammasome through the SMC4/NEMO pathway[J]. FEBS J, 2023, 290(6):1549-1562.
19
Jiang Y, Song S, Liu J, et al. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension[J]. Front Immunol, 2023, 14:1206452. doi: 10.3389/fimmu.2023.1206452.
20
Xi J, Ma Y, Liu D, et al. Astragaloside IV restrains pyroptosis and fibrotic development of pulmonary artery smooth muscle cells to ameliorate pulmonary artery hypertension through the PHD2/HIF1α signaling pathway[J]. BMC Pulm Med, 2023, 23(1):386. doi: 10.1186/s12890-023-02660-9.
21
李尚,吕婷婷,张子睿,等. 基因治疗在肺动脉高压中的研究进展 [J].江苏大学学报(医学版), 2022, 32 (03): 200-206.
22
Broz P, Pelegrín P. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3):143-157.
23
Gordon R, Albornoz EA. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465):eaah4066. doi: 10.1126/scitranslmed.aah4066.
24
Yang F, Qin Y, Wang Y, et al. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy[J]. Cell Physiol Biochem, 2018,50(4):1230-1244.
25
Zhou QY, Liu W, Gong SX, et al. Pulmonary artery smooth muscle cell pyroptosis promotes the proliferation of PASMCs by paracrine IL-1β and IL-18 in monocrotaline-induced pulmonary arterial hypertensive rats[J]. Exp Ther Med, 2024, 28(4):394. doi: 10.3892/etm.2024.12683.
26
Uhlmann F. SMC complexes: from DNA to chromosomes[J]. Nat Rev Mol Cell Biol, 2016, 17(7):399-412.
27
Wood AJ, Severson AF, Meyer BJ. Condensin and cohesin complexity:the expanding repertoire of functions[J]. Nat Rev Genet, 2010,11(6):391-404.
28
Swanson KV, Deng M. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019,19(8):477-489.
29
Zheng X, Chen W, Gong F, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review[J]. Front Immunol,2021, 12:711939. doi: 10.3389/fimmu.2021.711939.
30
Ma C, Liu S, Zhang S, et al. Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review)[J]. Int J Mol Med, 2018, 42(6):2979-2990.
31
Rabinovitch M, Guignabert C, Humbert M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension[J].Circ Res, 2014, 115(1):165-175.
32
Dai L, Chen Y, Wu J, et al. A novel complement C3 inhibitor CP40- KK protects against experimental pulmonary arterial hypertension via an inflammasome NLRP3 associated pathway[J]. J Transl Med, 2024,22(1):164. doi: 10.1186/s12967-023-04741-z.
33
Simpson CE, Chen JY, Damico RL, et al. Cellular sources of interleukin-6 and associations with clinical phenotypes and outcomes in pulmonary arterial hypertension[J]. Eur Respir J, 2020, 55(4):1901761.doi: 10.1183/13993003.01761-2019.
34
Li Y, Zhang YT, Han B, et al. Single-cell sequencing analysis confirms the association of ANRIL with the increased smooth muscle cell proliferation and migration gene signatures in pulmonary artery hypertension in silico[J]. Adv Med Sci, 2024, 69(2):217-223.
35
Luo J, Li H, Liu Z, et al. Integrative analyses of gene expression profile reveal potential crucial roles of mitotic cell cycle and microtubule cytoskeleton in pulmonary artery hypertension[J]. BMC Med Genomics, 2020, 13(1):86. doi: 10.1186/s12920-020-00740-x.
36
Hergalant S, Saurel C, Divoux M. Correlation between DNA methylation and cell proliferation identifies new candidate predictive markers in meningioma[J]. Cancers (Basel), 2022, 14(24):6227. doi:10.3390/cancers14246227.
[1] 周腾达, 陈庆丽, 杨雪林, 陈琪, 徐杰丰, 周光居, 张茂. 西维来司钠对猪心肺复苏后肾肠损伤作用的研究[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(06): 441-447.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[4] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[5] 季媛, 魏巴金. NLRP3炎性小体在器官移植不良反应发病机制中的研究进展[J/OL]. 中华移植杂志(电子版), 2023, 17(05): 308-312.
[6] 谢开晶, 张迅, 王耀丽. 创伤后脓毒症:不可忽视的严重并发症[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1048-1052.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.
[9] 姬震震, 李志坚. 含半胱氨酸的天冬氨酸蛋白水解酶1介导细胞焦亡在眼科领域的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 310-315.
[10] 张瑜廉, 党韩寒, 张传鹏, 何昆, 陈鹏宇, 张昀昇, 王在, 张黎, 于炎冰. 创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 5-16.
[11] 张子豪, 景瑞, 赵浩. 血清NLRP3炎症小体及其下游炎症因子水平与大动脉粥样硬化型脑梗死患者溶栓后出血转化及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 365-372.
[12] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[13] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[14] 庞婷, 邵远凯, 王志斌, 奚萍, 周力, 张圆, 周盼, 邓哲. rhaFGF通过抑制急性炎症慢性化促进糖尿病小鼠急性创面愈合[J/OL]. 中华卫生应急电子杂志, 2025, 11(01): 31-36.
[15] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
阅读次数
全文
2
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 0 0 0 2

  来源 本网站 其他网站
  次数 1 1
  比例 50% 50%

摘要
23
最新录用 在线预览 正式出版
0 0 23
  来源 本网站 其他网站
  次数 10 13
  比例 43% 57%


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?