切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 129 -138. doi: 10.3877/cma.j.issn.2095-1221.2025.03.001

论著

基于代谢组学分析的双氢青蒿素抗流感病毒作用机制研究
周长东1,2, 岳洋2, 李擎宇2, 杨稳2, 崔钰珂2, 王升启2, 王淑美1,(), 郭靓2,()   
  1. 1. 510006 广州,广东药科大学药学院
    2. 100850 北京,军事医学研究院生物信息中心
  • 收稿日期:2025-01-03 出版日期:2025-06-01
  • 通信作者: 王淑美, 郭靓

The mechanism of dihydroartemisinin's anti-influenza virus activity based on metabolomics analysis

Changdong Zhou1,2, Yang Yue2, Qingyu Li2, Wen Yang2, Yuke Cui2, Shengqi Wang2, Shumei Wang1,(), Liang Guo2,()   

  1. 1. School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
    2. Bioinformatics Center of AMMS, Beijing 100850, China
  • Received:2025-01-03 Published:2025-06-01
  • Corresponding author: Shumei Wang, Liang Guo
引用本文:

周长东, 岳洋, 李擎宇, 杨稳, 崔钰珂, 王升启, 王淑美, 郭靓. 基于代谢组学分析的双氢青蒿素抗流感病毒作用机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 129-138.

Changdong Zhou, Yang Yue, Qingyu Li, Wen Yang, Yuke Cui, Shengqi Wang, Shumei Wang, Liang Guo. The mechanism of dihydroartemisinin's anti-influenza virus activity based on metabolomics analysis[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(03): 129-138.

目的

探讨人非小细胞肺癌细胞 (A549)和人正常肺上皮细胞(BEAS-2B)中双氢青蒿素 (DHA)抗甲型流感病毒 (H1N1)感染的作用机制。

方法

用不同浓度的DHA 分别作用于A549 和BEAS-2B 细胞24 h,计算DHA 在2 种细胞中的CC50 值。用H1N1 感染A549细胞3 h 后,给予不同浓度的DHA (0.1、1 和10 μmol/L)处理24 h,用CCK-8 法检测细胞活性。采用空斑实验检测DHA 抑制H1N1 复制作用。用代谢组学分析H1N1 感染后,DHA 引起的差异代谢物,并对差异代谢物进行KEGG 通路富集图等分析。用试剂盒检测细胞内还原型谷胱甘肽 (GSH)和氧化型谷胱甘肽 (GSSG)含量、细胞内活性氧 (ROS)和线粒体功能。Western blot检测RIG1、MAVS、p-TBK1 和p-IRF3 蛋白表达,实时荧光定量PCR (RT-qPCR)法和酶联免疫吸附试验 (ELISA)分别检测IFN-α 和IFN-β mRNA 表达和分泌情况。两组间比较采用独立样本t 检验,多组间比较采用单因素方差分析,组间两两比较采用Tukey 多重检验。

结果

DHA在A549 和BEAS-2B 细胞中的CC50 值分别为18.26 μmol/L 和28.61 μmol/L,且DHA 浓度为1 μmol/ L 时可以提高细胞活性并减少空斑形成。此外,DHA 通过调节谷胱甘肽代谢,抑制流感病毒感染引起的谷氨酸、甘氨酸和鸟氨酸等物质代谢,同时抑制GSH 耗竭、GSSG 和ROS 形成,并减轻线粒体损伤。DHA 作用提高RIG1 和MAVS 蛋白表达,促进MAVS 向线粒体聚集并激活下游TBK1 及IRF3 蛋白磷酸化,上调IFN-α 和IFN-β mRNA 表达水平,并促进其蛋白分泌。

结论

DHA 通过调节细胞内谷胱甘肽稳态、减少ROS 形成、减轻线粒体损伤并增强天然免疫应答发挥抗流感病毒作用。

Objective

To investigate the mechanism of dihydroartemisinin (DHA) against influenza A virus (IAV) in human non-small cell lung cancer cells (A549) and normal human lung epithelial cells (BEAS-2B).

Methods

The CC50 values of DHA on A549 and BEAS- 2B cells was calculated after treatment with different concentrations of DHA for 24 hours. A549 cells were infected with H1N1 for 3 hours, then treated with different concentrations of DHA (0.1, 1, and 10 μmol/ L)for 24 hours, and cell viability was measured using the CCK-8 assay. The inhibitory effect of DHA on H1N1 replication was detected by plaque assay. Metabolomic was employed to analyze the differential metabolites induced by DHA following H1N1 infection, and the KEGG pathway enrichment analysis was conducted to map the pathways associated with these differential metabolites.The contents of reduced glutathione (GSH) and oxidized glutathione (GSSG), intracellular reactive oxygen species (ROS), and mitochondrial function were measured using commercial kits. The expression of RIG1, MAVS, p-TBK1, and p-IRF3 proteins was detected by Western blot. The mRNA expression and secretion levels of IFN-α and IFN-β were measured by real-time quantitative PCR(RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The comparison of means between two groups was performed using an independent samples t-test, the comparison of means among multiple groups was conducted using one-way ANOVA, and pairwise comparisons of means among multiple groups were tested using the Tukey's test method.

Results

The CC50 values of DHA in A549 and BEAS-2B cells was 18.26 μmol/ L and 28.61 μmol/L, respectively. At a concentration of 1 μmol/L, DHA enhanced cell viability and reduced plaque formation. DHA inhibited the metabolism of glutamate, glycine, and ornithine induced by influenza virus infection by regulating glutathione metabolism, and preventing GSH depletion as well as the formation of GSSG and ROS,thereby alleviating mitochondrial damage. Furthermore, DHA treatment increased the expression of RIG1 and MAVS proteins, promoting the aggregation of MAVS to mitochondria, and activating the phosphorylation of TBK1 and IRF3 proteins, while enhanced both mRNA expression and protein secretion of IFN-α and IFN-β.

Conclusion

DHA exerts its antiviral effects against influenza virus by regulating intracellular glutathione homeostasis, reducing ROS formation, alleviating mitochondrial damage, and enhancing the innate immune response.

表1 引物序列信息
图1 DHA 抑制流感病毒复制 注:a 图为DHA 在A549 和BEAS-2B 细胞上CC50 值的测定 (n = 6);b 图为CCK-8 检测各组细胞活力 (n = 6);c 图为空斑实验检测DHA 抑制H1N1复制作用 (n =3);**P < 0.01,***P < 0.001,ns 为差异无统计学意义
图2 代谢组学质控及差异代谢物火山图与KEGG 通路富集分析 注:a 图为代谢组学PLS-DA 图;b 图为代谢组学permutation 排列图分析;c 图为差异代谢物火山图;d 图为差异代谢物KEGG 富集气泡图
图3 差异代谢物的热图分析及含量测定 注:a 图为差异代谢物聚类热图;b 图为谷胱甘肽代谢通路差异代谢物的定量分析 (n = 6);c 图为A549 细胞内GSH 和GSSG 含量的测定 (n = 3);*P < 0.05,**P < 0.01,***P < 0.001
图4 酶标仪检测细胞内ROS 水平 注:*P < 0.05,**P < 0.01, n = 3
图5 荧光检测细胞内ROS 和mtROS 水平 注:a 图为荧光检测细胞内ROS 水平 (100 μm);b 图为荧光检测细胞内mtROS 水平 (50 μm);*P < 0.05,**P < 0.01, n = 3
图6 线粒体膜电位检测 注:荧光检测细胞内线粒体膜电位水平 (50 μm);*P < 0.05,**P < 0.01, n = 3
图7 Western blot 检测RIG1、MAVS、p-IRF3 和p-TBK1 蛋白表达 注:*P < 0.05,**P < 0.01, n = 3
图8 MAVS 和线粒体共定位水平检测 注:免疫荧光检测MAVS 和线粒体共定位水平,共定位水平用皮尔逊相关系数表示,每组统计15 个细胞 (20 μm);*P < 0.05,**P < 0.01,n = 15
图9 IFN-α 和IFN-β 含量测定 注:a 图为RT-qPCR 检测IFN-α 和IFN-β 的mRNA 表达 (n = 3);b 图为ELISA 检测细胞上清液IFN-α 和IFN-β 含量 (n = 3);*P < 0.05,**P < 0.01,***P < 0.001
1
Romão Junior JE. Acute kidney injury in patients with the influenza A virus (H1N1) [J]. J Bras Nefrol, 2013, 35(3): 168-169.
2
Kalil AC, Thomas PG. Influenza virus-related critical illness:pathophysiology and epidemiology [J]. Crit Care, 2019, 23(1): 258.doi:10.1186/s13054-019-2539-x.
3
Sieweke JT, Akin M, Stetskamp S, et al. Mechanical circulatory support in refractory cardiogenic shock due to influenza virus- related myocarditis [J]. Eur Respir J, 2020, 56(3):2000925. doi: 10.1183/13993003.00925-2020.
4
Lampejo T. Influenza and antiviral resistance: an overview [J]. Eur J Clin Microbiol Infect Dis, 2020, 39(7): 1201-1208.
5
van de Wall S, Badovinac VP, Harty JT. Influenza-specific lungresident mMemory CD8(+) T cells [J]. Cold Spring Harb Perspect Biol,2021, 13(2):a037978.doi: 10.1101/cshperspect.a037978.
6
Xiao Y, Yong J, Lu S, et al. Progress of influenza viruses and inhibitors[J]. Curr Med Chem, 2024.doi: 10.2174/010929867326831423120406 1224. Online ahead of print.
7
Heneghan CJ, Onakpoya I, Thompson M, et al. Zanamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments[J]. Bmj, 2014, 348: g2547. doi:10.1136/bmj.g2547.
8
Doshi P, Heneghan C, Jefferson T. Oseltamivir for influenza[J]. Lancet,2016, 387(10014): 124.doi: 10.1016/S0140-6736(15)01282-9.
9
Cáceres CJ, Hu Y, Cárdenas-García S, et al. Rational design of a deuterium-containing M2-S31N channel blocker UAWJ280 with in vivo antiviral efficacy against both oseltamivir sensitive and-resistant influenza A viruses [J]. Emerg Microbes Infect, 2021, 10(1):1832-1848.
10
Ho WE, Peh HY, Chan TK, et al. Artemisinins: pharmacological actions beyond anti-malarial [J]. Pharmacol Ther, 2014, 142(1):126-139.
11
Talman AM, Clain J, Duval R, et al. Artemisinin bioactivity and resistance in malaria parasites[J]. Trends Parasitol, 2019, 35(12):953-963.
12
Dai X, Zhang X, Chen W, et al. Dihydroartemisinin: a potential natural anticancer drug[J]. Int J Biol Sci, 2021, 17(2):603-622.
13
Keating GM. Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria[J]. Drugs,2012, 72(7):937-961.
14
Zyad A, Tilaoui M, Jaafari A, et al. More insights into the pharmacological effects of artemisinin[J]. Phytother Res, 2018, 32(2):216-229.
15
Dai X, Chen W, Qiao Y, et al. Dihydroartemisinin inhibits the development of colorectal cancer by GSK-3β/TCF7/MMP9 pathway and synergies with capecitabine[J]. Cancer Lett, 2024, 582: 216596.doi:10.1016/j.canlet.2023.216596.
16
Huang X, Xie Z, Liu F, et al. Dihydroartemisinin inhibits activation of the Toll-like receptor 4 signaling pathway and production of type I interferon in spleen cells from lupus-prone MRL/lpr mice[J]. Int Immunopharmacol, 2014, 22(1):266-272.
17
Yan SC, Wang YJ, Li YJ, et al. Dihydroartemisinin regulates the Th/Treg balance by inducing activated CD4+ T cell apoptosis via heme Oxygenase-1 induction in mouse models of inflammatory bowel disease[J]. Molecules, 2019, 24(13): 2475.doi: 10.3390/molecules24132475.
18
Bai B, Wu F, Ying K, et al. Therapeutic effects of dihydroartemisinin in multiple stages of colitis-associated colorectal cancer[J]. Theranostics,2021, 11(13): 6225-6239.
19
Luo J, Zhang Y, Wang Y, et al. Artesunate and dihydroartemisinin inhibit rabies virus replication[J]. Virol Sin, 2021, 36(4):721-729.
20
欧利,秦克,杨子宵,等.双氢青蒿素对甲型流感病毒H1N1 诱导人支气管上皮细胞TNF-α 和IL-6 表达的影响及机制研究[J].四川大学学报(医学版), 2020, 51(2):171-177.
21
杨霞.青蒿琥酯和双氢青蒿素抗甲型流感病毒作用研究[D].广州:华南农业大学, 2018.
22
Wu W, Arunagiri V, Do-Umehara HC, et al. Miz1 represses type I interferon production and limits viral clearance during influenza A virus infection[J]. Sci Signal, 2024, 17(831): eadg7867.doi: 10.1126/scisignal.adg7867.
23
Staal FJ, Ela SW, Roederer M, et al. Glutathione deficiency and human immunodeficiency virus infection[J]. Lancet, 1992, 339(8798): 909-912.
24
Suliman HB, Ryan LK, Bishop L, et al. Prevention of influenzainduced lung injury in mice overexpressing extracellular superoxide dismutase [J]. Am J Physiol Lung Cell Mol Physiol, 2001, 280(1):L69-78.
25
De Angelis M, Amatore D, Checconi P, et al. Influenza virus downmodulates G6PD expression and activity to induce oxidative stress and promote its replication [J]. Front Cell Infect Microbiol, 2021, 11:804976. doi: 10.3389/fcimb.2021.804976.
26
Dai JP, Wang QW, Su Y, et al. Emodin inhibition of influenza A virus replication and influenza viral pneumonia via the Nrf2, TLR4,p38/ JNK and NF-kappaB pathways[J]. Molecules, 2017, 22(10): 1754.doi: 10.3390/molecules22101754.
27
Hong KS, Pagan K, Whalen W, et al. The role of glutathione reductase in influenza infection[J]. Am J Respir Cell Mol Biol, 2022, 67(4):438-445.
28
Zhao T, Zhang J, Lei H, et al. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity[J]. EMBO J, 2023,42(16):e113258. doi: 10.15252/embj.2022113258.
29
Banoth B, Cassel SL. Mitochondria in innate immune signaling[J].Transl Res, 2018, 202:52-68.
30
Zhang Y, Li Q, Jiang N, et al. Dihydroartemisinin beneficially regulates splenic immune cell heterogeneity through the SOD3-JNK-AP-1 axis[J]. Sci China Life Sci, 2022, 65(8): 1636-1654.
31
Zhang N, Ma Y, Tian Y, et al. Downregulation of microRNA-221 facilitates H1N1 influenza A virus replication through suppression of type-IFN response by targeting the SOCS1/NF-κB pathway[J]. Mol Med Rep, 2021, 24(1):497. doi:10.3892/mmr.2021.12136.
32
Chu GE, Park JY, Park CH, et al. Mitochondrial reactive oxygen species in TRIF-dependent toll-like receptor 3 signaling in bronchial epithelial cells against viral infection[J]. Int J Mol Sci, 2023, 25(1):226. doi:10.3390/ijms25010226.
33
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity[J]. Immunity, 2015, 42(3):406-417.
34
Li J, Zhang R, Wang C, et al. WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response [J]. Nat Commun,2023, 14(1): 4824.doi: 10.1038/s41467-023-40567-5.
35
Faure M, Rabourdin-Combe C. Innate immunity modulation in virus entry [J]. Curr Opin Virol, 2011, 1(1):6-12.
36
Oberhardt V, Hofmann M, Thimme R, et al. Adaptive immune responses, immune escape and immune-mediated pathogenesis during HDV infection [J]. Viruses, 2022, 14(2):198. doi:10.3390/v14020198.
37
Xu X, Zheng J, Zheng K, et al. Respiratory syncytial virus NS1 protein degrades STAT2 by inducing SOCS1 expression[J]. Intervirology,2014, 57(2):65-73.
38
Zhang B, Xu S, Liu M, et al. The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy[J].Autophagy, 2023, 19(7):1916-1933.
[1] 何梦媛, 胡鸿保, 谢庆云, 廖冬发, 王维. 股骨头坏死的代谢组学的相关研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 379-382.
[2] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[3] 耿蒙慧, 张璨, 邢阿英, 王大琳, 胡艳秋. 胚胎质量评估方法的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2018, 14(05): 612-616.
[4] 张勇, 张立森, 岳良, 张磊磊, 柯海文, 沈运彪. 高原高寒条件下烧伤大鼠代谢指纹图谱绘制及代谢标志物筛选[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 42-54.
[5] 王璐, 王宇, 曾俊, 陈伟, 江华. 机器学习与多组学结合推动精准营养的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(06): 540-544.
[6] 肖慧, 徐维国, 范小兵, 李厚衡. 血清IL-34、SP-D、CXCL17在甲型流感病毒性肺炎患者中表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(03): 349-351.
[7] 洪浩, 周苏雅, 陈月, 李明. 液相色谱质谱法对47例非透析慢性肾脏病患者色氨酸-犬尿氨酸通路的分析[J/OL]. 中华肾病研究电子杂志, 2020, 09(06): 247-252.
[8] 丁潇楠, 韩秋霞, 张冬, 朱晗玉. 蛋白质组学及代谢组学在糖尿病肾病研究中的应用[J/OL]. 中华肾病研究电子杂志, 2020, 09(05): 232-235.
[9] 许倬, 李娇, 张利, 陈香美. 代谢组学在慢性肾脏病生物标志物临床研究中的应用[J/OL]. 中华肾病研究电子杂志, 2018, 07(05): 224-230.
[10] 秦魏婷, 孙炳伟. 进一步重视先天性免疫系统的应用研究[J/OL]. 中华重症医学电子杂志, 2018, 04(04): 304-306.
[11] 王宁, 吴慢莉, 杨东霞. 代谢组学生物标志物:子宫内膜异位症诊疗的新靶点[J/OL]. 中华临床医师杂志(电子版), 2022, 16(12): 1280-1283.
[12] 葛新顺, 于沛涛, 赵成松, 张英, 姚瑶. 帕拉米韦治疗儿童甲流的疗效及安全性[J/OL]. 中华临床医师杂志(电子版), 2017, 11(11): 1869-1872.
[13] 王晶, 徐灵彬, 孙莉. 老年感染与免疫衰老[J/OL]. 中华老年病研究电子杂志, 2021, 08(03): 9-12.
[14] 阿丽叶古丽·艾皮热, 克力木·阿不都热依木, 马永斌, 艾克拜尔·艾力. 基于GC-MS的肥胖高尿酸血症代谢组学研究[J/OL]. 中华肥胖与代谢病电子杂志, 2020, 06(04): 223-226.
[15] 沈奇伟, 刘思颖, 花荣, 许博, 邵怡凯, 姚琪远. 代谢手术相关的组学研究方法及进展[J/OL]. 中华肥胖与代谢病电子杂志, 2018, 04(04): 218-225.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?