1 |
方勇. 创面修复机制及技术研究进展[J]. 上海交通大学学报(医学版) [J]. 2009, 29(12): 1403-1406.
|
2 |
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways[J]. Cell Tissue Res, 2012, 347(1): 11-20.
|
3 |
韩虎. 10个地方山羊品种群体遗传结构及羊绒性状选择进化研究 [D]; 中国科学院大学, 2020.
|
4 |
Seeherman HJ, Berasi SP, Brown CT, et al. A BMP/activin A chimera is superior to native BMPs and induces bone repair in nonhuman primates when delivered in a composite matrix[J]. Sci Transl Med, 2019, 11(489):eaar4953. doi: 10.1126/scitranslmed.aar4953.
|
5 |
Lowery JW, Rosen V. The BMP pathway and its inhibitors in the skeleton[J]. Physiol Rev, 2018, 98(4): 2431-2452.
|
6 |
王燕妮. BMPs蛋白对烫伤创面愈合及疤痕疙瘩形成的影响[D].中南大学, 2007.
|
7 |
Herford AS, Lowe I, Jung P. Titanium mesh grafting combined with recombinant human bone morphogenetic protein 2 for alveolar reconstruction [J]. Oral and maxillofacial surgery clinics of North America, 2019, 31(2): 309-315.
|
8 |
Li H, Zou X, Baatrup A, et al. Cytokine profiles in conditioned media from cultured human intervertebral disc tissue. Implications of their effect on bone marrow stem cell metabolism [J]. Acta Orthop, 2005, 76(1): 115-121.
|
9 |
Roberts RM, Ezashi T, Sheridan MA, et al. Specification of trophoblast from embryonic stem cells exposed to BMP4[J]. Biol Reprod, 2018, 99(1): 212-224.
|
10 |
Cole AE, Murray SS, Xiao J. Bone Morphogenetic protein 4 signalling in neural stem and progenitor cells during development and after injury[J]. Stem Cells Int, 2016, 2016:9260592. doi: 10.1155/2016/9260592.
|
11 |
Baboota RK, Blüher M, Smith U. Emerging role of bone morphogenetic protein 4 in metabolic disorders[J]. Diabetes, 2021, 70(2): 303-312.
|
12 |
Sun B, Huo R, Sheng Y, et al. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy[J]. Hypertension, 2013, 61(2):352-360.
|
13 |
Hu H, Wang S, He Y, et al. The role of bone morphogenetic protein 4 in corneal injury repair[J]. Exp Eye Res, 2021, 212:108769. doi: 10.1016/j.exer.2021.108769.
|
14 |
Xi G, Best B, Mania-Farnell B, et al. Therapeutic Potential for Bone Morphogenetic Protein 4 in Human Malignant Glioma [J]. Neoplasia, 2017, 19(4): 261-270.
|
15 |
Wang JF, Lee MS, Tsai TL, et al. Bone morphogenetic protein-6 attenuates type 1 diabetes mellitus-associated bone loss[J]. Stem cells translational medicine, 2019, 8(6):522-534.
|
16 |
Verhamme FM, De Smet EG, Van Hooste W, et al. Bone morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-induced inflammation [J]. Mucosal immunology, 2019, 12(2):340-351.
|
17 |
Zhang Y, Zhang Q. Bone morphogenetic protein-7 and Gremlin: new emerging therapeutic targets for diabetic nephropathy[J]. Biochemical and biophysical research communications, 2009, 383(1):1-3.
|
18 |
Cortez MA, Masrorpour F, Ivan C, et al. Bone morphogenetic protein 7 promotes resistance to immunotherapy[J]. Nat Commun, 2020, 11(1):4840. doi: 10.1038/s41467-020-18617-z.
|
19 |
Desroches-Castan A, Tillet E, Ricard N, et al. Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis[J]. Hepatology, 2019, 70(4): 1392-1408.
|
20 |
Schmierer B, Hill CS. TGF beta-SMAD signal transduction:molecular specificity and functional flexibility[J]. Nat Rev Mol Cell Biol, 2007, 8(12):970-982.
|
21 |
Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins[J]. Nature, 1997, 390(6659): 465-471.
|
22 |
Murakami G, Watabe T, Takaoka K, et al. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads [J]. Mol Biol Cell, 2003, 14(7):2809-2817.
|
23 |
Grada A, Mervis J, Falanga V. Research techniques made simple: animal models of wound healing[J]. J Invest Dermatol, 2018, 138(10):2095-2105.e1.
|
24 |
Zeng R, Lin C, Lin Z, et al. Approaches to cutaneous wound healing: basics and future directions [J]. Cell Tissue Res, 2018, 374(2): 217-232.
|
25 |
Li M, Sun L, Liu Z, et al. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes[J]. Biomater Sci, 2023, 11(7):2461-2477.
|
26 |
Lukomskyj AO, Rao N, Yan L, et al. Stem cell-based tissue engineering for the treatment of burn wounds: a systematic review of preclinical studies [J]. Stem Cell Rev Rep, 2022, 18(6):1926-1955.
|
27 |
Al-Masawa ME, Alshawsh MA, Ng CY, et al. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies [J]. Theranostics, 2022, 12(15):6455-6508.
|
28 |
Działo E, Czepiel M, Tkacz K, et al. WNT/β-catenin signaling promotes TGF-β-mediated activation of human cardiac fibroblasts by enhancing IL-11 production[J]. Int J Mol Sci, 2021, 22(18):10072. doi: 10.3390/ijms221810072.
|
29 |
Sun Q, Guo S, Wang C-C, et al. Cross-talk between TGF-β/Smad pathway and Wnt/β-catenin pathway in pathological scar formation[J]. Int J Clin Exp Pathol, 2015, 8(6):7631-7639.
|
30 |
Chen X, Zankl A, Niroomand F, et al. Upregulation of ID protein by growth and differentiation factor 5 (GDF5) through a smad-dependent and MAPK-independent pathway in HUVSMC[J]. J Mol Cell Cardiol, 2006, 41(1):26-33.
|
31 |
Bochenek ML, Schäfer K. Role of endothelial cells in acute and chronic thrombosis [J]. Hamostaseologie, 2019, 39(2):128-139.
|
32 |
Pool JG. Normal hemostatic mechanisms:a review[J]. Am J Med Technol, 1977, 43(8):776-780.
|
33 |
Furie B, Furie BC. Mechanisms of thrombus formation[J]. N Engl J Med, 2008, 359(9):938-949.
|
34 |
Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution [J]. Immunol Rev, 2016, 273(1): 156-179.
|
35 |
Yipp BG, Kubes P. NETosis: how vital is it?[J]. Blood, 2013, 122(16): 2784-2794.
|
36 |
Sorokin L. The impact of the extracellular matrix on inflammation[J]. Nat Rev Immunol, 2010, 10(10):712-723.
|
37 |
Savill J, Fadok V. Corpse clearance defines the meaning of cell death[J]. Nature, 2000, 407(6805):784-788.
|
38 |
Leibovich SJ, Polverini PJ, Shepard HM, et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha[J]. Nature, 1987, 329(6140):630-632.
|
39 |
Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction [J]. Blood, 2010, 116(5):829-840.
|
40 |
Weller K, Foitzik K, Paus R, et al. Mast cells are required for normal healing of skin wounds in mice[J]. FASEB J, 2006, 20(13):2366-2368.
|
41 |
Garbuzenko E, Nagler A, Pickholtz D, et al. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis[J]. Clin Exp Allergy, 2002, 32(2):237-246.
|
42 |
Talbott HE, Mascharak S, Griffin M, et al. Wound healing, fibroblast heterogeneity, and fibrosis [J]. Cell Stem Cell, 2022, 29(8):1161-1180.
|
43 |
Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling[J]. Nat Rev Mol Cell Biol, 2002, 3(5):349-363.
|
44 |
Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis[J]. Curr Opin Cell Biol, 2010, 22(5):617-625.
|
45 |
Murray LA, Chen Q, Kramer MS, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P[J]. Int J Biochem Cell Biol, 2011, 43(1):154-162.
|
46 |
Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing[J]. J Invest Dermatol, 2007, 127(5):998-1008.
|
47 |
Lange SS, Bhetawal S, Reh S, et al. DNA polymerase ζ deficiency causes impaired wound healing and stress-induced skin pigmentation [J]. Life Sci Alliance, 2018, 1(3):e201800048. doi: 10.26508/lsa.201800048.
|
48 |
Schiefer JL, Held M, Fuchs PC, et al. Growth differentiation factor 5 accelerates wound closure and improves skin quality during repair of full-thickness skin defects[J]. Adv Skin Wound Care, 2017, 30(5):223-229.
|
49 |
Hesketh M, Sahin KB, West ZE, et al. Macrophage phenotypes regulate scar formation and chronic wound healing[J]. Int J Mol Sci, 2017, 18(7):1545. doi: 10.3390/ijms18071545.
|
50 |
Kim JH, Bae HC, Kim J, et al. HIF-1α-mediated BMP6 down-regulation leads to hyperproliferation and abnormal differentiation of keratinocytes in vitro[J]. Exp Dermatol, 2018, 27(11):1287-1293.
|
51 |
Theocharis A D, Skandalis S S, Gialeli C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97:4-27.
|
52 |
Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]. Science, 2017, 355(6326):748-752.
|
53 |
Bin S, Li HD, Xu YB, et al. BMP-7 attenuates TGF-β1-induced fibroblast-like differentiation of rat dermal papilla cells[J]. Wound Repair Regen, 2013, 21(2): 275-281.
|
54 |
Duan M, Zhang Y, Zhang H, et al. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing[J]. Stem Cell Res Ther, 2020, 11(1):452. doi: 10.1186/s13287-020-01971-6.
|
55 |
Ouji Y, Ishizaka S, Nakamura-Uchiyama F, et al. Partial maintenance and long-term expansion of murine skin epithelial stem cells by Wnt-3a in vitro[J]. J Invest Dermatol, 2015, 135(6):1598-1608.
|
56 |
Li H, Yao Z, He W, et al. P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor β1 expression[J]. Stem Cell Res Ther, 2016, 7(1):175. doi: 10.1186/s13287-016-0421-1.
|
57 |
Zaidi SH, Huang Q, Momen A, et al. Growth differentiation factor 5 regulates cardiac repair after myocardial infarction [J]. J Am Coll Cardiol, 2010, 55(2):135-143.
|
58 |
Zhao X, Bian R, Wang F, et al. GDF-5 promotes epidermal stem cells proliferation via Foxg1-cyclin D1 signaling[J]. Stem Cell Res Ther, 2021, 12(1):42. doi: 10.1186/s13287-020-02106-7.
|
59 |
Zhang J, He XC, Tong WG, et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion[J]. Stem Cells, 2006, 24(12): 2826-2839.
|
60 |
Yu H, Kumar SM, Kossenkov AV, et al. Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles[J]. J Invest Dermatol, 2010, 130(5):1227-1236.
|
61 |
El Seady R, Huisman MA, Löwik CW, et al. Uncomplicated differentiation of stem cells into bipolar neurons and myelinating glia [J]. Biochem Biophys Res Commun, 2008, 376(2):358-362.
|
62 |
杜伟斌, 全仁夫, 郑宣, 等. 毛囊干细胞在皮肤伤口修复中的促进作用[J]. 中国组织工程研究, 2015, 19(14): 2278-2282.
|
63 |
Li B, Hu W, Ma K, et al. Are hair follicle stem cells promising candidates for wound healing?[J]. Expert Opin Biol Ther, 2019, 19(2): 119-128.
|
64 |
Kandyba E, Kobielak K. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling [J]. Stem cells (Dayton, Ohio), 2014, 32(4): 886-901.
|
65 |
Oshimori N, Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation[J]. Cell stem cell, 2012, 10(1): 63-75.
|
66 |
Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling[J]. Proc Natl Acad Sci U S A, 2007, 104(24):10063-10068.
|
67 |
魏兆明, 江文胜, 高艺, 等. 脂肪间充质干细胞的生物学特性及潜在临床应用[J]. 中国临床药理学与治疗学, 2019, 24(01): 116-120.
|
68 |
Dong Y, Hassan WU, Kennedy R, et al. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer[J]. Acta Biomater, 2014, 10(5):2076-2085.
|
69 |
Lin L, Shen Q, Wei X, et al. Comparison of osteogenic potentials of BMP4 transduced stem cells from autologous bone marrow and fat tissue in a rabbit model of calvarial defects[J]. Calcif Tissue Int, 2009, 85(1):55-65.
|
70 |
Hao W, Dong J, Jiang M, et al. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold[J]. Int Orthop, 2010, 34(8):1341-1349.
|
71 |
Lin CY, Wang YH, Li KC, et al. Healing of massive segmental femoral bone defects in minipigs by allogenic ASCs engineered with FLPo/Frt-based baculovirus vectors[J]. Biomaterials, 2015, 50:98-106.
|
72 |
Fan J, Im CS, Cui ZK, et al. Delivery of phenamil enhances BMP-2-induced osteogenic differentiation of adipose-derived stem cells and bone formation in calvarial defects [J]. Tissue Eng Part A, 2015, 21(13-14): 2053-2065.
|
73 |
Lee SH, Hong B, Sharabi A, et al. Embryonic stem cells and mammary luminal progenitors directly sense and respond to microbial products[J]. Stem Cells, 2009, 27(7):1604-1615.
|
74 |
Fan J, Park H, Lee MK, et al. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model[J]. Tissue Eng Part A, 2014, 20(15-16):2169-2179.
|
75 |
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J]. Front Immunol, 2014, 5:556. doi: 10.3389/fimmu.2014.00556.
|
76 |
Kranendonk ME Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages[J]. Obesity (Silver Spring), 2014, 22(5):1296-1308.
|
77 |
Zhang Y, Mei H, Chang X, et al. Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155[J]. J Mol Cell Biol, 2016, 8(6): 505-517.
|
78 |
Chen B, Cai J, Wei Y, et al. Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis[J]. Plast Reconstr Surg, 2019, 144(5):816e-827e.
|
79 |
Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases[J]. Stem Cell Res Ther, 2017, 8(1):125. doi: 10.1186/s13287-017-0578-2.
|
80 |
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
|
81 |
Kang T, Jones TM, Naddell C, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
|
82 |
Choi EW, Seo MK, Woo EY, et al. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J]. Exp Dermatol, 2018, 27(10):1170-1172.
|
83 |
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep, 2017, 7(1):13321. doi: 10.1038/s41598-017-12919-x.
|
84 |
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6:32993.doi: 10.1038/srep32993.
|
85 |
Yamashita H, Shimizu A, Kato M, et al. Growth/differentiation factor-5 induces angiogenesis in vivo[J]. Exp Cell Res, 1997, 235(1):218-226.
|
86 |
Tang A, Amagai M, Granger LG, et al. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin[J]. Nature, 1993, 361(6407):82-85.
|
87 |
Ratzinger G, Stoitzner P, Ebner S, et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin[J]. J Immunol, 2002, 168(9): 4361-4371.
|
88 |
Zhang M, Zhang S. T cells in fibrosis and fibrotic diseases[J]. Front Immunol, 2020, 11:1142. doi: 10.3389/fimmu.2020.01142.
|
89 |
Martínez VG, Hernández-López C, Valencia J, et al. The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation[J]. Immunol Cell Biol, 2011, 89(5):610-618.
|
90 |
Martínez VG, Rubio C, Martínez-Fernández M, et al. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer[J]. Clin Cancer Res, 2017, 23(23):7388-7399.
|
91 |
Hager-Theodorides AL, Outram SV, Shah DK, et al. Bone morphogenetic protein 2/4 signaling regulates early thymocyte differentiation[J]. J Immunol, 2002, 169(10): 5496-5504.
|
92 |
Huse K, Bakkebø M, Oksvold M P, et al. Bone morphogenetic proteins inhibit CD40L/IL-21-induced Ig production in human B cells: differential effects of BMP-6 and BMP-7[J]. Eur J Immunol, 2011, 41(11):3135-3145.
|
93 |
Robson NC, Hidalgo L, Mc Alpine T, et al. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling[J]. Cancer Res, 2014, 74(18):5019-5031.
|
94 |
Sconocchia T, Hochgerner M, Schwarzenberger E, et al. Bone morphogenetic protein signaling regulates skin inflammation via modulating dendritic cell function[J]. J Allergy Clin Immunol, 2021, 147(5):1810-1822.e9.
|
95 |
Aluganti Narasimhulu C, Singla DK. The role of bone morphogenetic protein 7 (BMP-7) in inflammation in heart diseases[J]. Cells, 2020, 9(2):280. doi: 10.3390/cells9020280.
|
96 |
Milne P, Bigley V, Gunawan M, et al. CD1c+ blood dendritic cells have Langerhans cell potential [J]. Blood, 2015, 125(3):470-473.
|
97 |
Hopkins DR, Keles S, Greenspan DS. The bone morphogenetic protein 1/Tolloid-like metalloproteinases[J]. Matrix Biol, 2007, 26(7):508-523.
|
98 |
Vadon-Le Goff S, Hulmes DJ, Moali C. BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling[J]. Matrix Biol, 2015, 44-46:14-23.
|
99 |
François S, Eder V, Belmokhtar K, et al. Synergistic effect of human bone morphogenic protein-2 and mesenchymal stromal cells on chronic wounds through hypoxia-inducible factor-1 α induction [J]. Sci Rep, 2017, 7(1): 4272. doi: 10.1038/s41598-017-04496-w.
|
100 |
Bahamonde ME, Lyons KM. BMP3:to be or not to be a BMP[J]. J Bone Joint Surg Am, 2001, 83-A Suppl 1(Pt 1): S56-S62.
|
101 |
Jank M, von Niessen N, Olivier CB, et al. Platelet bone morphogenetic protein-4 mediates vascular inflammation and neointima formation after arterial injury[J]. Cells, 2021, 10(8):2027. doi: 10.3390/cells10082027.
|
102 |
Lewis CJ, Mardaryev AN, Poterlowicz K, et al. Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration[J]. J Invest Dermatol, 2014, 134(3): 827-837.
|
103 |
Chai P, Yu J, Wang X, et al. BMP9 promotes cutaneous wound healing by activating Smad1/5 signaling pathways and cytoskeleton remodeling [J]. Clin Transl Med, 2021, 11(1): e271. doi: 10.1002/ctm2.271.
|
104 |
Wu R, Hu W, Chen H, et al. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression [J]. Adv Sci (Weinh), 2021, 8(18): e2004629. doi: 10.1002/advs.202004629.
|
105 |
Begam H, Nandi SK, Kundu B, et al. Strategies for delivering bone morphogenetic protein for bone healing[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1):856-869.
|
106 |
Garrison KR, Shemilt I, Donell S, et al. Bone morphogenetic protein (BMP) for fracture healing in adults[J]. Cochrane Database Syst Rev, 2010, 2010(6): CD006950. doi: 10.1002/14651858.CD006950.pub2.
|
107 |
丁玉路, 张国芳. 首例国产rhBMP-2人工骨植入手术在成都军区昆明总医院完成[J].中国科技产业, 2014, (7): 67.
|
108 |
White KA, Olabisi RM. Spatiotemporal control strategies for bone formation through tissue engineering and regenerative medicine approaches[J]. Adv Healthc Mater, 2019, 8(2):e1801044. doi: 10.1002/adhm.201801044.
|