1 |
Andreone BJ, Larhammar M, Lewcock JW. Cell death and neurodegeneration[J]. Cold Spring Harb Perspect Biol, 2020, 12(2):a036434. doi: 10.1101/cshperspect.a036434.
|
2 |
Staff NP, Jones DT, Singer W. Mesenchymal stromal cell therapies for neurodegenerative diseases[J]. Mayo Clin Proc, 2019, 94(5):892-905.
|
3 |
Chen X, Pan W. The treatment strategies for neurodegenerative diseases by integrative medicine[J]. Integr Med Int, 2014, 1(4):223-225.
|
4 |
Sadatpoor SO, Salehi Z, Rahban D, et al. Manipulated mesenchymal stem cells applications in neurodegenerative diseases[J]. Int J Stem Cells, 2020, 13(1):24-45.
|
5 |
Yuan O, Lin C, Wagner J, et al. Exosomes derived from human primed mesenchymal stem cells induce mitosis and potentiate growth factor secretion[J]. Stem Cells Dev, 2019, 28(6):398-409.
|
6 |
Fayazi N, Sheykhhasan M, Soleimani Asl S, et al. Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment[J]. Molecular neurobiology, 2021, 58(7):3494-34514.
|
7 |
Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications[J]. J Extracell Vesicles, 2019, 8(1):1609206. doi: 10.1080/20013078.2019.1609206.
|
8 |
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514.
|
9 |
Qing L, Chen H, Tang J, et al. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9):765-776.
|
10 |
Guo M, Yin Z, Chen F, et al. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer's disease[J]. Alzheimers Res Ther, 2020, 12(1):109.doi: 10.1186/s13195-020-00670-x.
|
11 |
Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges[J]. Mol Ther, 2018, 26(7):1610-1623.
|
12 |
Hedayat M, Ahmadi M, Shoaran M, et al. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: a focus on non-coding RNAs cargo, drug delivery potential, perspective[J]. Life Sci, 2023, 320:121566. doi: 10.1016/j.lfs.2023.121566.
|
13 |
2020 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2020. doi: 10.1002/alz.12068.
|
14 |
Lane CA, Hardy J, Schott JM. Alzheimer's disease[J]. Eur J Neurol, 2018, 25(1):59-70.
|
15 |
Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2):312-339.
|
16 |
de Dios C, Bartolessis I, Roca-Agujetas V, et al. Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress[J]. Redox Biol, 2019, 26:101283. doi: 10.1016/j.redox.2019.101283.
|
17 |
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3:1197.doi: 10.1038/srep01197.
|
18 |
Xiong WP, Yao WQ, Wang B, et al. BMSCs-exosomes containing GDF-15 alleviated SH-SY5Y cell injury model of Alzheimer's disease via AKT/GSK-3β/β-catenin[J]. Brain Res Bull, 2021, 177:92-102.
|
19 |
Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer's disease[J]. Neurochem Res, 2018, 43(11):2165-2177.
|
20 |
Pascoal TA, Benedet AL, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages[J]. Nat Med, 2021, 27(9):1592-1599.
|
21 |
Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2):654-668.
|
22 |
Nakano M, Kubota K, Kobayashi E, et al. Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer's disease model by increasing the expression of microRNA-146a in hippocampus[J]. Sci Rep, 2020, 10(1):10772. doi: 10.1038/s41598-020-67460-1.
|
23 |
Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3):747-753. doi: 10.1161/STROKEAHA.116.015204.
|
24 |
Wei H, Xu Y, Chen Q, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death Dis, 2020, 11(4):290.doi: 10.1038/s41419-020-2490-4.
|
25 |
Wang X, Yang G. Bone marrow mesenchymal stem cells-derived exosomes reduce Aβ deposition and improve cognitive function recovery in mice with Alzheimer's disease by activating sphingosine kinase/sphingosine-1-phosphate signaling pathway[J]. Cell Biol Int, 2021, 45(4):775-784.
|
26 |
Wang SS, Jia J,Wang Z. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice[J]. J Alzheimers Dis, 2018, 61(3):1005-1013.
|
27 |
Sha S, Shen X, Cao Y, et al. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway[J]. Aging (Albany NY), 2021, 13(11):15285-306.
|
28 |
Losurdo M, Pedrazzoli M, D'Agostino C, et al. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease[J]. Stem Cells Transl Med, 2020, 9(9):1068-1084.
|
29 |
Liu S, Fan M, Xu JX, et al. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology[J]. J Neuroinflammation, 2022, 19(1):35.doi: 10.1186/s12974-022-02393-2.
|
30 |
de Godoy MA, Saraiva LM, de Carvalho LRP, et al. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers[J]. J Biol Chem, 2018, 293(6):1957-1975.
|
31 |
Chen YA, Lu CH, Ke CC, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer's disease pathology and improve cognitive deficits[J]. Biomedicines, 2021, 9(6):594. doi: 10.3390/biomedicines9060594.
|
32 |
Yang L, Zhai Y, Hao Y, et al. The regulatory functionality of exosomes derived from hUMSCs in 3D culture for Alzheimer's disease therapy[J]. Small, 2020, 16(3):e1906273.doi: 10.1002/smll.201906273.
|
33 |
Lee M, Ban JJ, Yang S, et al. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease[J]. Brain Res, 2018, 1691:87-93.
|
34 |
Zayed MA, Sultan S, Alsaab HO, et al. Stem-cell-based therapy: the celestial weapon against neurological disorders[J]. Cells, 2022, 11(21):3476. doi: 10.3390/cells11213476.
|
35 |
Zheng Y, Zhou J, Wang Y, et al. Neural stem/progenitor cell transplantation in Parkinson's rodent animals: a meta-analysis and systematic review[J]. Stem Cells Transl Med, 2022, 11(4):383-393.
|
36 |
Rodríguez-Pallares J, García-Garrote M, Parga JA, et al. Combined cell-based therapy strategies for the treatment of Parkinson's disease: focus on mesenchymal stromal cells[J]. Neural Regen Res, 2023, 18(3):478-484.
|
37 |
Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, et al. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis[J]. Cytotherapy, 2015, 17(7):932-939.
|
38 |
Teixeira FG, Vilaça-Faria H, Domingues AV, et al. Preclinical comparison of stem cells secretome and levodopa application in a 6-Hydroxydopamine rat model of Parkinson's disease[J]. Cells, 2020, 9(2):315. doi: 10.3390/cells9020315.
|
39 |
Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy[J]. Cell Death Dis, 2020, 11(4):288. doi: 10.1038/s41419-020-2473-5.
|
40 |
Li Q, Wang Z, Xing H, et al. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease[J]. Mol Ther Nucleic Acids, 2021, 23:1334-1344.
|
41 |
Xue C, Li X, Ba L, et al. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson's disease[J]. Aging Dis, 2021, 12(5):1211-1222.
|
42 |
Lee HK, Finniss S, Cazacu S, et al. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression[J]. Stem Cells Dev, 2014, 23(23):2851-2861.
|
43 |
Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth[J]. Stem Cells, 2012, 30(7):1556-1564.
|
44 |
Lopez-Verrilli MA, Caviedes A, Cabrera A, et al. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth[J]. Neuroscience, 2016, 320:129-139.
|
45 |
Sun Z, Gu P, Xu H, et al. Human umbilical cord mesenchymal stem cells improve locomotor function in Parkinson's disease mouse model through regulating intestinal microorganisms[J]. Front Cell Dev Biol, 2022, 9:808905. doi: 10.3389/fcell.2021.808905.
|
46 |
Teixeira FG, Carvalho MM, Panchalingam KM, et al. Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson's disease[J]. Stem Cells Transl Med, 2017, 6(2):634-646.
|
47 |
Ramalingam M, Jang S, Jeong HS. Therapeutic effects of conditioned medium of neural differentiated human bone marrow-derived stem cells on rotenone-induced alpha-synuclein aggregation and apoptosis[J]. Stem Cells Int, 2021, 2021:6658271. doi: 10.1155/2021/6658271.
|
48 |
Marques CR, Pereira-Sousa J, Teixeira FG, et al. Mesenchymal stem cell secretome protects against alpha-synuclein-induced neurodegeneration in a caenorhabditis elegans model of Parkinson's disease[J]. Cytotherapy, 2021, 23(10):894-901.
|
49 |
Mendes-Pinheiro B, Anjo SI, Manadas B, et al. Bone marrow mesenchymal stem cells' secretome exerts neuroprotective effects in a Parkinson's disease rat model[J]. Front Bioeng Biotechnol, 2019, 7:294.doi: 10.3389/fbioe.2019.00294.
|
50 |
Ahmed HH, Salem AM, Atta HM, et al. Updates in the pathophysiological mechanisms of Parkinson's disease: emerging role of bone marrow mesenchymal stem cells[J]. World J Stem Cells, 2016, 8(3):106-117.
|
51 |
Zhou L, Wang X, Wang X, et al. Neuroprotective effects of human umbilical cord mesenchymal stromal cells in PD mice via centrally and peripherally suppressing NLRP3 inflammasome-mediated inflammatory responses[J]. Biomed Pharmacother, 2022, 153:113535. doi: 10.1016/j.biopha.2022.113535.
|
52 |
Chierchia A, Chirico N, Boeri L, et al. Secretome released from hydrogel-embedded adipose mesenchymal stem cells protects against the Parkinson's disease related toxin 6-hydroxydopamine[J]. Eur J Pharm Biopharm, 2017, 121:113-120.
|
53 |
Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018[J]. Mayo Clin Proc, 2018, 93(11):1617-1628.
|
54 |
Xu L, Liu T, Liu L, et al. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. J Neurol, 2020, 267(4):944-953.
|
55 |
Fang MY, Markmiller S, Vu AQ, et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD[J]. Neuron, 2019, 103(5):802-19.e11.
|
56 |
Deora V, Lee JD, Albornoz EA, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins[J]. Glia, 2020, 68(2):407-421.
|
57 |
Giunti D, Marini C, Parodi B, et al. Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation[J]. Sci Rep, 2021, 11(1):1740. doi: 10.1038/s41598-021-81039-4.
|
58 |
Wang X, Zhang Y, Jin T, et al. Adipose-derived mesenchymal stem cells combined with extracellular vesicles may improve amyotrophic lateral sclerosis[J]. Front Aging Neurosci, 2022, 14:830346.doi: 10.3389/fnagi.2022.830346.
|
59 |
Zuo X, Zhou J, Li Y, et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS[J]. Nat Struct Mol Biol, 2021, 28(2):132-142.
|
60 |
Bonafede R, Scambi I, Peroni D, et al. Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis[J]. Exp Cell Res, 2016, 340(1):150-158.
|
61 |
Calabria E, Scambi I, Bonafede R, et al. ASCs-exosomes recover coupling efficiency and mitochondrial membrane potential in an in vitro model of ALS[J]. Front Neurosci, 2019, 13:1070.doi: 10.3389/fnins.2019.01070.
|
62 |
Bonafede R, Brandi J, Manfredi M, et al. The anti-apoptotic effect of ASC-Exosomes in an in vitro ALS model and their proteomic analysis[J]. Cells, 2019, 8(9):1087. doi: 10.3390/cells8091087.
|
63 |
Bonafede R, Turano E, Scambi I, et al. ASC-exosomes ameliorate the disease progression in SOD1(G93A) murine model underlining their potential therapeutic use in human ALS[J]. Int J Mol Sci, 2020, 21(10):3651. doi: 10.3390/ijms21103651.
|
64 |
Soundara Rajan T, Giacoppo S, Diomede F, et al. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis[J]. Int J Immunopathol Pharmacol, 2017, 30(3):238-252.
|
65 |
Li Z, Liu F, He X, et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia[J]. Int Immunopharmacol, 2019, 67:268-280.
|
66 |
Zhang J, Buller BA, Zhang ZG, et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system[J]. Exp Neurol, 2022, 347:113895. doi: 10.1016/j.expneurol.2021.113895.
|
67 |
Park KR, Hwang CJ, Yun HM, et al. Prevention of multiple system atrophy using human bone marrow-derived mesenchymal stem cells by reducing polyamine and cholesterol-induced neural damages[J]. Stem Cell Res Ther, 2020, 11(1):63.doi: 10.1186/s13287-020-01590-1.
|
68 |
Wenceslau CV, de Souza DM, Mambelli-Lisboa NC, et al. Restoration of BDNF, DARPP32, and D2R expression following intravenous infusion of human immature dental pulp stem cells in Huntington's disease 3-NP rat model[J]. Cells, 2022, 11(10):1664. doi: 10.3390/cells11101664.
|
69 |
Giampà C, Alvino A, Magatti M, et al. Conditioned medium from amniotic cells protects striatal degeneration and ameliorates motor deficits in the R6/2 mouse model of Huntington's disease[J]. J Cell Mol Med, 2019, 23(2):1581-1592.
|
70 |
Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain[J]. J Control Release, 2022, 348:723-744.
|
71 |
SHARMA S, MASUD M K, KANETI Y V, et al. Extracellular vesicle nanoarchitectonics for novel drug delivery applications[J]. Small, 2021, 17(42):e2102220.doi: 10.1002/smll.202102220.
|
72 |
Jahangard Y, Monfared H, Moradi A, et al. Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of Alzheimer's disease[J]. Front Neurosci, 2020, 14:564-564. doi: 10.3389/fnins.2020.00564.
|
73 |
Shi J, Jiang X, Gao S, et al. Gene-modified exosomes protect the brain against prolonged deep hypothermic circulatory arrest[J]. Ann Thorac Surg, 2021, 111(2):576-585.
|
74 |
Yang J, Luo S, Zhang J, et al. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson's disease[J]. Neurobiol Dis, 2021, 148:105218.doi: 10.1016/j.nbd.2020.105218.
|
75 |
Cui GH, Guo HD, Li H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease[J]. Immun Ageing, 2019, 16(1):10-10.doi: 10.1186/s12979-019-0150-2.
|
76 |
Liu L, Li Y, Peng H, et al. Targeted exosome coating gene-chem nanocomplex as "nanoscavenger" for clearing α-synuclein and immune activation of Parkinson's disease[J]. Sci Adv, 2020, 6(50):eaba3967. doi: 10.1126/sciadv.aba3967.
|
77 |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. doi: 10.1126/science.aau6977.
|
78 |
Lai JJ, Chau ZL, Chen SY, et al. Exosome processing and characterization approaches for research and technology development[J]. Adv Sci (Weinh), 2022, 9(15):e2103222.doi: 10.1002/advs.202103222.
|
79 |
Guy R, Offen D. Promising opportunities for treating neurodegenerative diseases with mesenchymal stem cell-derived exosomes[J]. Biomolecules, 2020, 10(9):1320. doi: 10.3390/biom10091320.
|
80 |
Chen YS, Lin EY, Chiou TW, et al. Exosomes in clinical trial and their production in compliance with good manufacturing practice[J]. Ci Ji Yi Xue Za Zhi, 2020, 32(2):113-120.
|
81 |
Chu M, Wang H, Bian L, et al. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia[J]. Stem Cell Rev Rep, 2022, 18(6):2152-2163.
|
82 |
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use[J]. Bone Marrow Transplant, 2019, 54(Suppl 2):789-792.
|
83 |
Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes[J]. Cancer Sci, 2020, 111(9):3100-3110.
|
84 |
Malekian F, Shamsian A, Kodam SP, et al. Exosome engineering for efficient and targeted drug delivery: current status and future perspective[J]. J Physiol, 2022. doi: 10.1113/JP282799.
|
85 |
Xu M, Feng T, Liu B, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies[J]. Theranostics, 2021, 11(18):8926-8944.
|