切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (02) : 75 -82. doi: 10.3877/cma.j.issn.2095-1221.2021.02.002

所属专题: 文献

论著

低浓度过氧化氢对HaCat细胞增殖和大鼠创面愈合的作用与机制研究
张江河1, 李玉红2, 李余杰1, 张洪壮1, 张一鸣1,()   
  1. 1. 400037 重庆,陆军军医大学新桥医院整形美容科
    2. 400038 重庆,陆军军医大学基础医学院细胞生物学教研室
  • 收稿日期:2020-11-02 出版日期:2021-04-01
  • 通信作者: 张一鸣
  • 基金资助:
    国家自然科学基金资助(81971844)

The effect and potential mechanism of low level hydrogen peroxide on HaCat cell proliferation and wound healing in rat

Jianghe Zhang1, Yuhong Li2, Yujie Li1, Hongzhuang Zhang1, Yiming Zhang1,()   

  1. 1. Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
    2. Department of Cell Biology, Army Medical University, Chongqing 400038, China
  • Received:2020-11-02 Published:2021-04-01
  • Corresponding author: Yiming Zhang
引用本文:

张江河, 李玉红, 李余杰, 张洪壮, 张一鸣. 低浓度过氧化氢对HaCat细胞增殖和大鼠创面愈合的作用与机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 75-82.

Jianghe Zhang, Yuhong Li, Yujie Li, Hongzhuang Zhang, Yiming Zhang. The effect and potential mechanism of low level hydrogen peroxide on HaCat cell proliferation and wound healing in rat[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(02): 75-82.

目的

探讨低浓度过氧化氢(H2O2)对创面愈合的促进作用及其可能的作用机制。

方法

建立大鼠全层皮肤缺损创面模型,将大鼠分为对照组(使用生理盐水)、高、低浓度H2O2组(分别使用3﹪、0.01﹪H2O2干预)。选取第0、3、6、9、12、15、18天共7个时间点评估创面愈合率,并在第3、6、9天对创面组织样本进行组织病理检测。使用CCK-8法探索了不同浓度的H2O2对HaCat细胞增殖的影响。将细胞分为对照组、35 μmol/L H2O2组、35 μmol/L H2O2+ML385组3组[使用5 μmol/L的核因子E2相关因子2 (Nrf2)抑制剂ML385预处理]检测各组的细胞增殖活性,并使用免疫荧光法及流式细胞分析技术分别检测各组细胞内磷酸化Nrf2 (pNrf2)的核转位和活性氧(ROS)的水平。重复观测的创面愈合情况使用重复测量方差分析,多组间比较采用单因素方差分析,多个实验组与一个对照组间的比较采用Dunnett-t检验。

结果

与对照组相比,0.01﹪H2O2组在3、6、9、12、15、18 d愈合率升高,使创面炎症期提前且缩短,3 ﹪H2O2组愈合率降低,差异具有统计学意义(P均< 0.05)。在细胞实验中,与对照组相比,25.92、43.2 μmol/L H2O2均可促进细胞增殖(吸光度:1.30±0.04比1.52±0.06、1.49±0.07),差异有统计学意义(P均< 0.05),故选取35 μmol/L H2O2进行接下来的实验。与35 μmol/L H2O2组相比,对照组和35 μmol/L H2O2+ML385组HaCat细胞的增殖活性(吸光度:1.47±0.05比1.30±0.05、1.23±0.06),pNrf2核转位(荧光强度:30.81±14.31比9.11±4.45、13.61±6.83)降低,差异有统计学意义(P < 0.05)。与对照组相比,35 μmol/L H2O2组和35 μmol/L H2O2+ML385组ROS水平升高(平均荧光强度:593.56±19.98比621.56±32.08、701.44±54.04)差异有统计学意义(P < 0.05)。

结论

低浓度H2O2可通过提高细胞增殖活性促进创面愈合,且该过程受Nrf2调节。

Objective

To explore the promoting effect of low concentration hydrogen peroxide (H2O2) on wound healing and its possible mechanism.

Methods

In this study, the rat model of full-thickness skin defect was established, and the rats were divided into control group (using normal saline) , high concentration H2O2 group (3﹪H2O2 group) and low concentration H2O2 group (0.01﹪H2O2 group) . The wound healing rate was evaluated at 0, 3, 6, 9, 12, 15 and 18 days respectively, and the wound tissue samples were examined by histopathology at 3, 6 and 9 days. The CCK-8 method was used to explore the effects of different concentrations of H2O2 on the proliferation of HaCat cells. The cells were divided into control group, 35 mol/L H2O2 group and 35 mol/L H2O2+ML385 group [35 mol/L H2O2+ML385 group was pretreated with 5 μmol/L nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385]. The nuclear transposition of phospho-Nrf2 (pNrf2) and reactive oxygen species (ROS) levels in each group were detected by immunofluorescence and flow cytometry, respectively. A repeated-measures ANOVA was used for statistical analysis of the wound closure. One-way ANOVA was used for comparison between multiple groups, and Dunnett-t test was used for comparison between multiple experimental groups and control group.

Results

Compared with the control group, the healing rate of 0.01﹪ H2O2 group increased on the 3, 6, 9, 12, 15 and 18 days, which made the inflammatory period of wound earlier and shorter, while the healing rate of 3﹪ H2O2 group decreased, with statistical significance (all P < 0.05) . In the cell experiment, compared with the control group, 25.92 and 43.2 μmol/L H2O2 could promote cell proliferation (absorbance: 1.30±0.04 vs 1.52±0.06 and 1.49±0.07) , with statistical significance (all P < 0.05) . Therefore, H2O2 at an intermediate concentration of 35 μmol/L was selected for the next experiment. Compared with the 35 mol/L H2O2 group, the proliferative activity of HaCat cells in the control group and the 35 mol/L H2O2+ML385 group (absorbance: 1.47±0.05 vs 1.30±0.05 and 1.23±0.06) and the nuclear translocation of pNrf2 (fluorescence intensity: 30.81±14.31 vs 9.11±4.45 and 13.61±6.83) were significantly reduced (P < 0.05) . Compared with the control group, ROS levels in the 35 mol/L H2O2 group and the 35 mol/L H2O2+ML385 group were significantly higher (mean fluorescence intensity: 593.56±19.98 vs 621.56±32.08 and 701.44±54.04) , with statistical significance (P < 0.05) .

Conclusion

Low concentration H2O2 can promote wound healing by increasing the cell proliferation, and this process is regulated by Nrf2.

表1 对照组及0.01 ﹪、3 ﹪H2O2组创面愈合率比较(﹪,±s
图1 正常视野下观察对照组、0.01 ﹪H2O2组和3 ﹪H2O2组创面愈合情况
图2 显微镜下观察第3、6、9天创面标本组织切片(HE染色,×100)
图3 不同浓度的H2O2对HaCat细胞增殖的影响
图4 抑制Nrf2活性后H2O2对HaCat细胞增殖的影响
图5 激光共聚焦显微镜下观察各组pNrf2核转位情况(DAPI染色细胞核,Alexa Fluor?647荧光二抗染色pNrf2,×200)
图6 细胞核内pNrf2相对荧光强度定量分析
图7 细胞中活性氧的流式细胞分析
图8 细胞内活性氧平均荧光强度比较
1
Dumville JC, McFarlane E, Edwards P, et al. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery[J]. Cochrane Database Syst Rev, 2015, 2015(4):Cd003949. doi: 10.1002/14651858.CD003949.pub4.
2
Gardezi M, Roque D, Barber D, et al. Wound irrigation in orthopedic open fractures: A review[J]. Surg Infect (Larchmt), 2020. doi: 10.1089/sur.2020.075.
3
Owens BD, White DW, Wenke JC. Comparison of irrigation solutions and devices in a contaminated musculoskeletal wound survival model[J]. J Bone Joint Surg Am, 2009, 91(1):92-98.
4
Cordeiro JV, Jacinto A. The role of transcription-independent damage signals in the initiation of epithelial wound healing[J]. Nat Rev Mol Cell Biol, 2013, 14(4):249-262.
5
Niethammer P, Grabher C, Look AT, et al. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J]. Nature, 2009, 459(7249):996-999.
6
Brånemark PI, Ekholm R. Tissue injury caused by wound disinfectants[J]. J Bone Joint Surg Am, 1967, 49(1):48-62.
7
Gould L, Li WW. Defining complete wound closure: Closing the gap in clinical trials and practice[J]. Wound Repair Regen, 2019, 27(3):201-224.
8
Guo S, Dipietro LA. Factors affecting wound healing[J]. J Dent Res, 2010, 89(3):219-229.
9
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3):909-950.
10
Sen CK. The general case for redox control of wound repair[J]. Wound Repair Regen, 2003, 11(6):431-438.
11
Roy S, Khanna S, Nallu K, et al. Dermal wound healing is subject to redox control[J]. Mol Ther, 2006, 13(1):211-220.
12
付小兵,程飚,盛志勇. 组织结构特征对创面愈合研究的启示[J]. 中华创伤杂志, 2003, 19(4):4-5.
13
Lu MC, Ji JA, Jiang ZY, et al. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update[J]. Med Res Rev, 2016, 36(5):924-963.
14
Maulik N, Das DK. Redox signaling in vascular angiogenesis[J]. Free Radic Biol Med, 2002, 33(8):1047-1060.
15
Blázquez-Castro A, Stockert JC. In vitro human cell responses to a low-dose photodynamic treatment vs. mild H2O2 exposure[J]. J Photochem Photobiol B, 2015, 143:12-19.
16
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98(3):1169-1203.
17
Murakami S, Motohashi H. Roles of Nrf2 in cell proliferation and differentiation[J]. Free Radic Biol Med, 2015, 88(Pt B):168-178.
18
Singh A, Venkannagari S, Oh KH, et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors[J]. ACS Chem Biol, 2016, 11(11):3214-3225.
19
Kang ES, Woo IS, Kim HJ, et al. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage[J]. Free Radic Biol Med, 2007, 43(4):535-545.
20
Mittler R. ROS are good[J]. Trends Plant Sci, 2017, 22(1):11-19.
[1] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[2] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[3] 汪国建, 谭雨龙, 龙爽, 吕晓凡, 赵娜, 冉新泽, 王军平, 王涛. 高温高湿环境暴露对重度放创复合伤小鼠损伤恢复的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 285-292.
[4] 程飚. 浓缩血小板制品在创面修复中应用与思考[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 276-276.
[5] 何泽亮, 李锦, 张程亮, 随振阳, 安亮恩, 刘玲玲, 姚媛媛, 张聚磊, 仇树林, 李晓东. 采用超声清创联合负压吸引疗法治疗深度烧伤溶痂创面的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 123-127.
[6] 尚强强, 王凌峰, 巴特, 曹胜军, 周彪, 李全, 侯智慧, 闫增强, 陈强. 外泌型汗腺参与创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 450-453.
[7] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[8] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[9] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[10] 王甜甜, 温媛, 李振, 叶美红, 郭影, 马双. 和厚朴酚调控Nrf2/ARE通路对胃癌细胞的顺铂化疗敏感性的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 202-209.
[11] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[12] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[13] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[14] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
[15] 张金颖, 哈力甫•阿布拉, 张艳君. 扶正消萎汤对慢性萎缩性胃炎大鼠胃黏膜修复作用及Nrf2/ARE通路的影响研究[J]. 中华胃食管反流病电子杂志, 2023, 10(02): 82-89.
阅读次数
全文


摘要