切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (02) : 83 -89. doi: 10.3877/cma.j.issn.2095-1221.2021.02.003

所属专题: 文献

论著

胃饥饿素对小鼠急性肺损伤的保护作用及其机制研究
雷莲莲1, 李力1, 毕婧1,()   
  1. 1. 725000 安康,陕西省安康市中心医院呼吸内科
  • 收稿日期:2020-06-28 出版日期:2021-04-01
  • 通信作者: 毕婧

The protective effect and mechanism of ghrelin on acute lung injury in mice

Lianlian Lei1, Li Li1, Jing Bi1,()   

  1. 1. Department of Respiratory Medicine of Ankang Central Hospital, Ankang 725000, China
  • Received:2020-06-28 Published:2021-04-01
  • Corresponding author: Jing Bi
引用本文:

雷莲莲, 李力, 毕婧. 胃饥饿素对小鼠急性肺损伤的保护作用及其机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 83-89.

Lianlian Lei, Li Li, Jing Bi. The protective effect and mechanism of ghrelin on acute lung injury in mice[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(02): 83-89.

目的

探讨胃饥饿素对小鼠急性肺损伤的保护作用和机制。

方法

将60只小鼠采用随机数字表法分为6组:对照组、模型组、胃饥饿素低、中、高剂量组和地塞米松组。对照组和模型组腹腔注射0.2 mL生理盐水,胃饥饿素各组分别注射400、200、100 μg/kg溶液,地塞米松组注射2 mg/kg。给药后1 h,对照组滴注等体积生理盐水,其余各组鼻腔滴入10 μg (20 μL)脂多糖(LPS)。24 h后,测量肺湿/干重(W/D),ELISA测量支气管肺泡灌洗液(BALF)中肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6和血清中TNF-α、IL-6和IL-1β含量,苏木精-伊红染色检测肺组织病理学形态,蛋白免疫印迹法测量肺组织中IL-1β p17、半胱氨酸天冬氨酸蛋白酶-1 (caspase-1) p20、Nod样受体家族3 (NLRP3)和消皮素(GSDMD)蛋白表达。体外培养肺泡巨噬细胞,分为对照组、LPS+三磷酸腺苷(ATP)组、低、中和高剂量胃饥饿素组。碘化吡啶(PI)染色观察细胞焦亡,蛋白免疫印迹法检测细胞中IL-1β p17、caspase-1 p20、NLRP3和GSDMD蛋白表达。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与对照组比较,模型组肺W/D (4.03±0.46比12.71±0.68)、BALF中TNF-α (3.92±0.59比12.83±0.66)、IL-6 (23.94±3.51比159.03±5.21)、血清中TNF-α (2.67±0.29比13.23±0.76)、IL-6 (26.73±2.61比141.64±3.86)和IL-1β (43.89±4.19比249.03±5.38)含量升高,肺组织IL-1β p17 (0.67±0.02比0.93±0.02)、caspase-1 p20 (0.67±0.04比1.02±0.08)、NLRP3 (0.58±0.04比0.91±0.03)和GSDMD蛋白表达(0.46±0.06比1.06±0.09)上调,差异具有统计学意义(P均< 0.05)。与模型组比较,低、中和高剂量胃饥饿素组和地塞米松组肺W/D (12.71±0.68比11.13±0.53,7.56±0.31,6.12±0.32,6.14±0.34)、BALF中TNF-α (12.83±0.66比9.89±0.47,9.78±0.53,7.33±0.27,6.27±0.38)、IL-6 (159.03±5.21比130.32±2.49,122.87±3.31,67.42±1.70,56.45±3.33)以及血清中TNF-α (13.23±0.76比10.14±0.52,9.04±0.46,6.43±0.38,6.35±0.26)、IL-6 (141.64±3.86比121.89±3.34,116.42±2.68,71.23±3.02,78.54±5.13)和IL-1β含量(249.03±5.38比230.14±5.53,196.53±6.41,100.67±3.50,91.56±4.29)呈浓度依赖性减低,肺组织IL-1β p17 (0.93±0.02比0.84±0.01,0.71±0.02,0.61±0.04,0.60±0.02)、caspase-1 p20 (1.02±0.08比0.90±0.03,0.81±0.02,0.63±0.03,0.61±0.03)、NLRP3 (0.91±0.03比0.85±0.03,0.68±0.05,0.64±0.02,0.68±0.03)和GSDMD蛋白表达(1.06±0.09比0.71±0.02,0.75±0.02,0.67±0.03,0.61±0.01)呈浓度依赖性下调,差异具有统计学意义(P均< 0.05)。与对照组比较,LPS+ATP组PI阳性细胞数增加,细胞肿胀和膜破裂,肺泡巨噬细胞中IL-1β p17 (0.44±0.01比0.99±0.03)、caspase-1 p20(0.37±0.01比1.32±0.02)、NLRP3 (0.39±0.02比1.31±0.01)和GSDMD表达(0.39±0.01比0.83±0.02)上调,差异具有统计学意义(P均< 0.05)。与LPS+ATP组比较,低、中和高剂量胃饥饿素组PI阳性细胞数呈剂量依赖性减少,细胞肿胀和膜破裂缓解,肺泡巨噬细胞中IL-1β p17 (0.99±0.03比0.55±0.02,0.45±0.02,0.31±0.02)、caspase-1 p20 (1.32±0.02比0.45±0.02,0.42±0.02,0.09±0.01)、NLRP3 (1.31±0.01比0.90±0.02,0.82±0.02,0.33±0.01)和GSDMD (0.83±0.02比0.67±0.04,0.49±0.01,0.35±0.02)表达呈剂量依赖性下调,差异具有统计学意义(P均< 0.05)。

结论

胃饥饿素对小鼠急性肺损伤具有保护作用,该作用可能与NLRP3炎性小体介导炎症反应和肺泡巨噬细胞焦亡有关。

Objective

To explore the protective effect and mechanism of ghrelin on acute lung injury in mice.

Methods

Sixty mice were randomly divided into 6 groups, including control group, model group, low-dose ghrelin group, middle-dose group, high-dose group and dexamethasone group. The mice in control group and model group were intraperitoneally injected with 0.2 mL normal saline, the mice in ghrelin group were injected with 400 μg/kg, 200 μg/kg and 100 μg/kg respectively, and the mice in dexamethasone group were injected with 2 mg/kg. One hour after administration, 10 μg (20 μL) lipopolysaccharide (LPS) was instilled into the nasal cavity in model group as well as treatment groups, and the equal volume of saline was injected into the control group. After 24 hours, lung wet/dry weight (W/D) was detected. The contents of tumor necrosis factor-α (TNF-α) , interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) and the contents of TNF-α, IL-6 and IL-1β in serum were analyzed by ELISA. The pathological morphology of lung tissue was analyzed by HE staining. The expression of IL-1β p17, cysteinyl aspartate specific proteinase-1 (Caspase-1) p20, Nod-like receptor protein 3 (NLRP3) and GSDMD protein were detected by western blot. Alveolar macrophages were cultured in vitro and divided into control group, LPS+ATP group, low dose group, middle dose group and high dose group. The pyroptosis was analyzed by PI staining. And the expression of IL-1β p17, caspase-1 p20, NLRP3 and GSDMD proteins were observed by western blot. One-way analysis of variance was used for comparison between multiple groups, and LSD-t test was used for pairwise comparison between groups.

Results

Compared with the control group, the lung W/D (4.03±0.46 vs 12.71±0.68) , TNF-α in BALF (3.92±0.59 vs 12.83±0.66) , IL-6 (23.94±3.51 vs 159.03±5.21) , serum levels of TNF-α (2.67±0.29 vs 13.23±0.76) , IL-6 (26.73±2.61 vs 141.64±3.86) and IL-1β (43.89±4.19 vs 249.03±5.38) in lung tissue of model group were increased, and IL-1β p17 (0.67±0.02 vs 0.93±0.02) , caspase-1 p20 (0.67±0.04 vs 1.02±0.08) , NLRP3 (0.58±0.04 vs 0.91±0.03) and GSDMD (0.46±0.06 vs 1.06±0.09) proteins expression were up-regulated significantly (P < 0.05) . Compared with the model group, W/D (12.71±0.68 vs 11.13±0.53, 7.56±0.31, 6.12±0.32, 6.14±0.34) and the contents of TNF-α (12.83±0.66 vs 9.89±0.47, 9.78±0.53, 7.33±0.27, 6.27±0.38) , IL-6 (159.03±5.21 vs 130.32±2.49, 122.87±3.31, 67.42±1.70, 56.45±3.33) in BALF and the contents of TNF-α (13.23±0.76 vs 10.14±0.52, 9.04±0.46, 6.43±0.38, 6.35±0.26) , IL-6 (141.64±3.86 vs 121.89±3.34, 116.42±2.68, 71.23±3.02, 78.54±5.13) and IL-1β (249.03±5.38 vs 230.14±5.53, 196.53±6.41, 100.67±3.50, 91.56±4.29) were dose-dependently decreased in serum in low dose group, middle dose group, high dose group and dexamethasone group, and the expression of IL-1β p17 (0.93±0.02 vs 0.84±0.01, 0.71±0.02, 0.61±0.04, 0.60±0.02) , caspase-1 p20 (1.02±0.08 vs 0.90±0.03, 0.81±0.02, 0.63±0.03, 0.61±0.03) , NLRP3 (0.91±0.03 vs 0.85±0.03, 0.68±0.05, 0.64±0.02, 0.68±0.03) and GSDMD (1.06±0.09 vs 0.71±0.02, 0.75±0.02, 0.67±0.03, 0.61±0.01) protein in lung tissue was dose-dependently downregulated (P < 0.05) . Compared with the control group, the number of PI-positive cells in the LPS+ATP group was increased, the cells were swelled and the membrane was ruptured, and IL-1β p17 (0.44±0.01 vs 0.99±0.03) and caspase-1 p20 (0.37±0.01 vs 1.32±0.02) , NLRP3 (0.39±0.02 vs 1.31±0.01) and GSDMD (0.39±0.01 vs 0.83±0.02) in alveolar macrophages were significantly up-regulated, and the difference was statistically significant (P < 0.05) . Compared with LPS+ATP group, the number of PI positive cells in low, middle and high dose groups was dose-dependently decreased, cell swelling and membrane rupture were relieved, and the expression of IL-1β p17 (0.99±0.03 vs 0.55±0.02, 0.45±0.02, 0.31±0.02) , caspase-1 p20 (1.32±0.02 vs 0.45±0.02, 0.42±0.02, 0.09±0.01) , NLRP3 (1.31±0.01 vs 0.90±0.02, 0.82±0.02, 0.33±0.01) and GSDMD (0.83±0.02 vs 0.67±0.04, 0.49±0.01, 0.35±0.02) in alveolar macrophages was dose-dependently downregulated (P < 0.05) .

Conclusions

Ghrelin has protective effect on acute lung injury in mice, which may be related to NLRP3 inflammasome mediated inflammatory response and pyroptosis in alveolar macrophages.

表1 胃饥饿素对小鼠W/D、BALF中IL-6和TNF-α含量的影响(±s
表2 胃饥饿素对小鼠血清中IL-1β、IL-6和TNF-α含量的影响(±s
图1 倒置显微镜下观察胃饥饿素对小鼠肺组织病理形态的影响(苏木精-伊红染色,×40)
表3 胃饥饿素对肺组织中IL-1β p17、caspase-1 p20、NLRP3和GSDMD蛋白表达的影响(±s
图2 胃饥饿素干预后小鼠肺组织内IL-1β p17、caspase-1 p20、NLRP3和GSDMD蛋白表达
图3 胃饥饿素对肺泡巨噬细胞中碘化吡啶阳性细胞数的影响
表4 胃饥饿素对肺泡巨噬细胞中IL-1β p17、caspase-1 p20、NLRP3和GSDMD蛋白表达的影响(±s
图4 胃饥饿素对肺泡巨噬细胞中IL-1β p17、caspase-1 p20、NLRP3和GSDMD蛋白表达的影响
1
Liu ZJ, Zhong J, Zhang M, et al. The alexipharmic mechanisms of five licorice ingredients involved in CYP450 and Nrf2 pathways in paraquat-induced mice acute lung injury[J]. Oxid Med Cell Longev, 2019, 2019:7283104.
2
Tu GW, Ju MJ, Zheng YJ, et al. CXCL16/CXCR6 is involved in LPS-induced acute lung injury via P38 signalling[J]. J Cell Mol Med, 2019, 23(8):5380-5389.
3
Huang XQ, Zhu JQ, Jiang YY, et al. SU5416 attenuated lipopolysaccharide-induced acute lung injury in mice by modulating properties of vascular endothelial cells[J]. Drug Des Devel Ther, 2019, 13:1763-1772.
4
Shao XF, Li B, Shen J, et al. Ghrelin alleviates traumatic brain injury-induced acute lung injury through pyroptosis/NF-κB pathway[J]. Int Immunopharmacol, 2020, 79:106175.
5
Cheng Y, Wei Y, Yang W, et al. Ghrelin attenuates intestinal barrier dysfunction following intracerebral hemorrhage in mice[J]. Int J Mol Sci, 2016, 17(12):2032.
6
Corrêa da Silva F, Aguiar C, Pereira JAS, et al. Ghrelin effects on mitochondrial fitness modulates macrophage function[J]. Free Radic Biol Med, 2019, 145:61-66.
7
Ahmad M, Dar NJ, Bhat ZS, et al. Inflammation in ischemic stroke: mechanisms, consequences and possible drug targets[J]. CNS Neurol Disord Drug Targets, 2014, 13(8):1378-1396.
8
Liu G, Mei H, Chen M, et al. Protective effect of agmatine against hyperoxia-induced acute lung injury via regulating lncRNA gadd7[J]. Biochem Biophys Res Commun, 2019, 516(1):68-74.
9
Tu GW, Ju MJ, Zheng YJ, et al. CXCL16/CXCR6 is involved in LPS-induced acute lung injury via P38 signalling[J]. J Cell Mol Med, 2019, 23(8):5380-5389.
10
Wang J, Cao Y, Liu Y, et al. PIM1 inhibitor SMI-4a attenuated lipopolysaccharide-induced acute lung injury through suppressing macrophage inflammatory responses via modulating p65 phosphorylation[J]. Int Immunopharmacol, 2019, 73:568-574.
11
Rungsung S, Singh TU, Rabha DJ, et al. Luteolin attenuates acute lung injury in experimental mouse model of sepsis[J]. Cytokine, 2018, 110:333-343.
12
Niu X, Zang L, Li W, et al. Anti-inflammatory effect of Yam Glycoprotein on lipopolysaccharide-induced acute lung injury via the NLRP3 and NF-κB/TLR4 signaling pathway[J]. Int Immunopharmacol, 2020, 81:106024.
13
Li G, Liu J, Xia WF, et al. Protective effects of ghrelin in ventilator-induced lung injury in rats[J]. IntImmunopharmacol, 2017, 52:85-91.
14
Tian L, Li W, Wang T. Therapeutic effects of silibinin on LPS-induced acute lung injury by inhibiting NLRP3 and NF-κB signaling pathways[J]. Microb Pathog, 2017, 108:104-108.
15
Tang F, Fan K, Wang K, et al. Atractylodin attenuates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome and TLR4 pathways[J]. J Pharmacol Sci, 2018, 136(4):203-211.
16
Yang X, Sun X, Chen H, et al. The protective effect of dopamine on ventilator-induced lung injury via the inhibition of NLRP3 inflammasome[J]. Int Immunopharmacol, 2017, 45:68-73.
17
Zhang A, Wang S, Zhang J, et al. Genipin alleviates LPS-induced acute lung injury by inhibiting NF-κB and NLRP3 signaling pathways[J]. Int Immunopharmacol, 2016, 38:115-119.
18
Joshi N, Walter JM, Misharin AV. Alveolar Macrophages[J]. Cell Immunol, 2018, 330:86-90.
19
Beck-Schimmer B, Schwendener R, Pasch T, et al. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury[J]. Respir Res, 2005, 6(1):61.
20
Shao L, Meng D, Yang F, et al. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells[J]. Biochem Biophys Res Commun, 2017, 487(2):194-200.
21
Chang L, Niu F, Chen J, et al. Ghrelin improves muscle function in dystrophindeficient mdx mice by inhibiting NLRP3 inflammasome activation[J]. Life Sci, 2019, 232:116654.
22
Wang Q, Lin P, Li P, et al. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway[J]. Life Sci, 2017, 186:50-58.
23
Sun N, Wang H, Wang L. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway[J]. Mol Med Rep, 2016, 14(3):2764-2770.
24
Sagulenko V, Thygesen SJ, Sester DP, et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC[J]. Cell Death Differ, 2013, 20(9):1149-1160.
[1] 梁哲浩, 方明笋, 胡弘毅, 陶涛, 徐孝平, 孙华琴. 基于生物信息学分析筛选脓毒症诱导急性肺损伤的关键基因[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 360-366.
[2] 赵希伟, 周佳伟, 刘凯, 侯林义, 张文凯. 连接蛋白43通过蛋白激酶A介导丝氨酸373调控脓毒症急性肺损伤肺泡Ⅱ型上皮细胞屏障功能的研究[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 355-361.
[3] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[4] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[5] 周强, 赵烨德, 王雨翔, 肖仕初. 烧伤合并烟雾吸入性肺损伤病理机制和治疗研究新进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 171-175.
[6] 张长文, 林少清, 吕敏捷, 金霄, 朱常军, 冯旰珠. 铜绿假单胞菌分泌蛋白Pec1抑制巨噬细胞自噬及影响铜绿假单胞菌清除效应初步观察[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 370-376.
[7] 田家庚, 李熳, 王赜煜, 赵莹, 张志广. 胃饥饿素介导幽门螺杆菌相关消化不良的动物实验研究[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 313-319.
[8] 季媛, 魏巴金. NLRP3炎性小体在器官移植不良反应发病机制中的研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 308-312.
[9] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[10] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[11] 朱冠能, 汪洋, 宋海苗, 汪骏东. 血清铁蛋白及C反应蛋白水平对胸部创伤后急性肺损伤的预测意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 379-381.
[12] 许发琼, 贺斌峰, 黄朝旺, 胡明冬. 非编码RNA调控巨噬细胞炎症反应在ALI/ARDS中的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 677-680.
[13] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[14] 陈梦婷, 孟潇潇, 王瑞兰. 急性肺损伤时肺部微环境介导的细胞代谢变化的研究进展[J]. 中华重症医学电子杂志, 2022, 08(01): 80-84.
[15] 胡俊晟, 黄荣, 黄毅, 曾光, 金永志, 李梦帆. 丹参多酚酸盐通过Nrf2/HO-1信号通路对脂多糖诱导的小鼠急性肺损伤的保护作用[J]. 中华临床医师杂志(电子版), 2021, 15(12): 1024-1030.
阅读次数
全文


摘要