切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (01) : 40 -47. doi: 10.3877/cma.j.issn.2095-1221.2021.01.006

所属专题: 文献

综述

间充质干细胞源性外泌体microRNA在心脏缺血性损伤修复中的研究进展
曹润峰1, 葛俊文1, 方霞2, 沈立1,()   
  1. 1. 200062 上海交通大学附属儿童医院(上海市儿童医院)心胸外科
    2. 200011 上海交通大学医学院附属第九人民医院组织工程实验室
  • 收稿日期:2020-05-19 出版日期:2021-02-01
  • 通信作者: 沈立
  • 基金资助:
    国家自然科学基金(81371449)

Advances in mesenchymal stem cell-derived exosome microRNA in repair of Cardiac ischemic injury

Runfeng Cao1, Junwen Ge1, Xia Fang2, Li Shen1,()   

  1. 1. Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
    2. Tissue Engineering Laboratory of the Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
  • Received:2020-05-19 Published:2021-02-01
  • Corresponding author: Li Shen
引用本文:

曹润峰, 葛俊文, 方霞, 沈立. 间充质干细胞源性外泌体microRNA在心脏缺血性损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 40-47.

Runfeng Cao, Junwen Ge, Xia Fang, Li Shen. Advances in mesenchymal stem cell-derived exosome microRNA in repair of Cardiac ischemic injury[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(01): 40-47.

心脏缺血性损伤是危害人类健康的重要原因,过去的干细胞疗法具有重要的功能缺陷,如免疫排斥、致瘤性和输注毒性等问题。大量研究表明,间充质干细胞的主要治疗作用是由旁分泌因子所介导。最新研究发现,间充质干细胞来源的外泌体microRNA从移植的干细胞转移至缺血损伤的心脏细胞,调节细胞的增殖、凋亡、炎症和血管生成。本文对来源于间充质干细胞的外泌体及其内部microRNA在心脏缺血性损伤修复中的分子机制进行综述。

Cardiac ischemic injuryseriously threatens human health. Previous stem cell therapy has following disadvantages, such as immune rejection, tumorigenicity and infusion toxicity. Previous studies showed that the therapy effect of stem cells transplantation is mainly mediated by paracrine factors. Recent studies have found that stem cell-derived exosome microRNAs are transferred from transplanted stem cells to recipient heart cells and can regulate cell proliferation, apoptosis, inflammation and angiogenesis. Here we reviewed the molecular mechanism of exosomes and the internal microRNAs incardiac ischemic injury repair.

图1 间充质干细胞源性外泌体microRNA作用于心脏的缺血性损伤修复过程
图2 外泌体microRNA的生物发生过程
图3 间充质干细胞分泌的外泌体microRNA作用于心肌细胞的分子机制
表1 间充质干细胞分泌的外泌体microRNA作用于心肌细胞
外泌体来源 microRNA 分子机制 作用细胞 效应 引文
体外 miR-125b-5p 抑制心肌促凋亡基因p53和BAK1的表达 心肌细胞 抑制心肌细胞凋亡 [23]
体外 miR-486-5p 激活PI3K / AKT途径 心肌细胞 抑制心肌细胞凋亡 [41]
C57BL/6J miR-125b 抑制p53-Bnip3信号传导 心肌细胞 减少梗死心脏的自噬通量 [37]
C57BL/6J miR-214 网格蛋白介导的选择性内吞外泌体miR-214 心肌细胞 抑制心肌细胞凋亡 [39]
C57BL/6J miR-22 抑制甲基CpG结合蛋白2 (Mecp2) 心肌细胞 抑制心肌细胞凋亡 [25]
C57BL/6J miR-378 抑制丝裂原激活的蛋白激酶(MAPK) 心肌细胞 抑制心肌细胞凋亡 [30]
C57BL/6N miR-21 靶向抑制SORBS2和PDLIM5 心肌细胞 保护心肌免受损伤 [31]
C57BL/6 miR-210 以nSMase2依赖性方式增强外泌体的分泌 心肌细胞
内皮细胞
促进新生血管的形成,抑制心肌细胞的凋亡 [35]
小鼠 miR-21a-5p 下调Peli1、PDPD4、FasL和PTEN凋亡蛋白质表达水平 心肌细胞 抑制心肌细胞凋亡 [24]
小鼠 miR-144 增加P-Akt、P-GSK3β、P-p44/42 MAPK表达 心肌细胞 改善心肌功能并减少梗死面积 [19,38]
大鼠 miR-146a 下调EGR1 心肌细胞 抑制心肌细胞凋亡 [40]
大鼠 miR-24 抑制Bax、caspase-3蛋白的表达 心肌细胞 抑制心肌细胞凋亡 [42]
大鼠 miR-26a 增加GSK3β表达和减少Cx43表达 心肌细胞 恢复电导率并减少心律不齐 [33]
大鼠 miR-19a 靶向PTEN-Akt/ERK信号通路 心肌细胞 抑制心肌细胞凋亡并保持线粒体膜电位 [34]
图4 间充质干细胞分泌的外泌体microRNA作用于非心肌细胞的分子机制
表2 间充质干细胞分泌的外泌体microRNA作用于心脏非心肌细胞
表3 注射不同生物材料递送外泌体
41
Sun XH, Wang X, Zhang Y, et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res, 2019, 177(5):23-32.
42
Zhang CS, Shao K, Liu CW, et al. Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15):6691-6699.
43
Yu JM, Zhang XB, Jiang W, et al. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction[J]. Mol Med Rep, 2015, 12(5): 6718-6726.
44
Garikipati VN, Krishnamurthy P, Verma SK, et al. Negative regulation of miR-375 by interleukin-10 enhances bone marrow-derived progenitor cell-mediated myocardial repair and function after myocardial infarction[J]. Stem Cells, 2015, 33(12):3519-3529.
45
Zhang J, Sun XJ, Chen J, et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy[J]. J Diabetes Complications, 2017, 31(1):241-244.
46
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
47
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15(2):261-271.
48
Banerjee N, Kim H, Talcott S, et al. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR[J]. Carcinogenesis, 2013, 34(12):2814-2822.
49
Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8):2085-2092.
50
Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA- 21[J]. Stem Cells Transl Med, 2017, 6(1):209-222.
51
Song Y, Zhang C, Zhang J, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction[J]. Theranostics, 2019, 9(8):2346-2360.
52
Qiao L, Hu S, Liu S, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential[J]. J Clin Invest, 2019, 129(6):2237-2250.
53
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
54
Ma T, Chen Y, Chen Y, et al. MicroRNA-132, Delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018:3290372. doi: 10.1155/2018/3290372.
55
Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3):332-343.
56
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
57
Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic hindlimb[J]. Circ Res, 2017, 120(9):1466-1476.
58
Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211.
59
Henriques-Antunes H, Cardoso RMS, Zonari A, et al. The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration[J]. ACS Nano, 2019, 13(8):8694-8707.
60
Lv K, Li Q, Zhang L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction[J]. Theranostics, 2019, 9(24):7403-7416.
61
Zhang K, Zhao X, Chen X, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Appl Mater Interfaces, 2018, 10(36):30081-30091.
62
Liu B, Lee BW, Nakanishi K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5):293-303.
63
Han C, Zhou J, Liang C, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair[J]. Biomater Sci, 2019, 7(7):2920-2933.
64
Kordelas L, Rebmann V, Ludwig AK, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease[J]. Leukemia, 2014, 28(4):970-3.
65
Ng KS, Smith JA, McAteer MP, et al. Bioprocess decision support tool for scalable manufacture of extracellular vesicles[J]. Biotechnol Bioeng, 2019, 116(2):307-319.
66
Watson DC, Bayik D, Srivatsan A, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles[J]. Biomaterials, 2016, 105:195-205.
67
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150:137-149.
68
Chung JJ, Han J, Wang LL, et al. Delayed delivery of endothelial progenitor cell-derived extracellular vesicles via shear thinning gel improves postinfarct hemodynamics[J]. J Thorac Cardiovasc Surg, 2020, 159(5):1825-1835.e2.
1
Eggers KM, Hjort M, Baron T, et al. Morbidity and cause-specific mortality in first-time myocardial infarction with nonobstructive coronary arteries[J]. J Intern Med, 2019,285(4):419-428.
2
Andersson C,Vasan RS. Epidemiology of cardiovascular disease in young individuals[J]. Nat Rev Cardiol, 2018, 15(4):230-240.
3
Prathipati P, Nandi SS, Mishra PK. Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy[J]. Stem Cell Rev Rep, 2017, 13(1):79-91.
4
Jung JH, Fu X,Yang PC. Exosomes generated from iPSC-derivatives: new direction for stem cell therapy in human heart diseases[J]. Circ Res, 2017, 120(2):407-417.
5
Kishore R, Khan M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair[J]. Circ Res, 2016, 118(2):330-43.
6
Sherif AY, Harisa GI, Alanazi FK, et al. Engineering of exosomes: steps towards green production of drug delivery systems[J]. Curr Drug Targets, 2019,20(15):1537-1549.
7
Ju C, Shen Y, Ma G, et al. Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium[J]. J Cardiovasc Transl Res, 2018, 11(5):420-428.
8
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2):428-445.e18.
9
Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells[J]. Immunity, 2014, 41(1):89-103.
10
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues[J]. Nature, 2017, 542(7642):450-455.
11
Lu D,Thum T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease[J]. Nat Rev Cardiol, 2019, 16(11):661-674.
12
Quezada C, Torres Á, Niechi I, et al. Role of extracellular vesicles in glioma progression[J]. Mol Aspects Med, 2018, 60:38-51.
13
Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4):656-673.
14
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs[J]. Nat Commun, 2013, 4:2980. doi: 10.1038/ncomms3980.
15
Kim VN, Han J,Siomi MC. Biogenesis of small RNAs in animals[J]. Nat Rev Mol Cell Biol,2009,10(2):126-139.
16
Gasperini M, Hill AJ, McFaline-Figueroa JL, et al. A genome-wide framework for mapping gene regulation via cellular genetic screens[J]. Cell, 2019,176(1-2):377-390.e19.
17
Zhang S, Teo KYW, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200(4):35-47.
18
Hu X, Xu Y, Zhong Z, et al. A Large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization[J]. Circ Res, 2016, 118(6):970-983.
19
Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway[J]. Stem Cell Res Ther, 2020, 11(1):36.
20
Peng Y, Zhao JL, Peng ZY, et al. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2[J]. Cell Death Dis, 2020, 11(5):317.
21
Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19[J]. Cardiovasc Res, 2020, 116(2):353-367.
22
Hong Y, He H, Jiang G, et al. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction[J]. Aging Cell, 2020, 19(4):e13128. doi: 10.1111/acel.13128.
23
Mayourian J, Ceholski DK, Gorski PA, et al. Exosomal microRNA-21- 5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility[J]. Circ Res, 2018, 122(7):933-944.
24
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119(6):125-137.
25
Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PLoS One, 2014, 9(2):e88685.
26
Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017:4150705. doi: 10.1155/2017/4150705.
27
Qian L, Van Laake LW, Huang Y, et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J]. J Exp Med, 2011, 208(3): 549-560.
28
Caravia XM, Fanjul V, Oliver E, et al. The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function[J]. PLoS Biol, 2018, 16(10):e2006247. doi: 10.1371/journal.pbio.2006247.
29
Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18(12):1355-1365.
30
Ganesan J, Ramanujam D, Sassi Y, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors[J]. Circulation, 2013, 127(21):2097-2106.
31
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5):2136-2146.
32
Rawal S, Munasinghe PE, Nagesh PT, et al. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart[J]. Clin Sci(Lond), 2017, 131(9):847-863.
33
Park H, Park H, Mun D, et al. Extracellular vesicles derived from hypoxic human mesenchymal stem cells attenuate GSK3β expression via miRNA-26a in an ischemia-reperfusion injury model[J]. Yonsei Med J, 2018, 59(6):736-745.
34
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA- 4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol, 2015, 182: 349-360.
35
Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8):1659-1670.
36
Nah J, Fernandez AF, Kitsis RN, et al. Does autophagy mediate cardiac myocyte death during stress?[J]. Circ Res, 2016, 119(8):893-895.
37
Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b[J]. Circ Res, 2018, 123(5):564-578.
38
Li J, Rohailla S, Gelber N, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning[J]. Basic Res Cardiol, 2014, 109(5): 423.
39
Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction[J]. J Biol Chem, 2019, 294(31):11665-11674.
40
Pan J, Alimujiang M, Chen Q, et al. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J]. J Cell Biochem, 2019, 120(3):4433-4443.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[6] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[7] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[10] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[11] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[14] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要