41 |
Sun XH, Wang X, Zhang Y, et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res, 2019, 177(5):23-32.
|
42 |
Zhang CS, Shao K, Liu CW, et al. Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15):6691-6699.
|
43 |
Yu JM, Zhang XB, Jiang W, et al. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction[J]. Mol Med Rep, 2015, 12(5): 6718-6726.
|
44 |
Garikipati VN, Krishnamurthy P, Verma SK, et al. Negative regulation of miR-375 by interleukin-10 enhances bone marrow-derived progenitor cell-mediated myocardial repair and function after myocardial infarction[J]. Stem Cells, 2015, 33(12):3519-3529.
|
45 |
Zhang J, Sun XJ, Chen J, et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy[J]. J Diabetes Complications, 2017, 31(1):241-244.
|
46 |
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
|
47 |
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15(2):261-271.
|
48 |
Banerjee N, Kim H, Talcott S, et al. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR[J]. Carcinogenesis, 2013, 34(12):2814-2822.
|
49 |
Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8):2085-2092.
|
50 |
Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA- 21[J]. Stem Cells Transl Med, 2017, 6(1):209-222.
|
51 |
Song Y, Zhang C, Zhang J, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction[J]. Theranostics, 2019, 9(8):2346-2360.
|
52 |
Qiao L, Hu S, Liu S, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential[J]. J Clin Invest, 2019, 129(6):2237-2250.
|
53 |
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
|
54 |
Ma T, Chen Y, Chen Y, et al. MicroRNA-132, Delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018:3290372. doi: 10.1155/2018/3290372.
|
55 |
Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3):332-343.
|
56 |
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
|
57 |
Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic hindlimb[J]. Circ Res, 2017, 120(9):1466-1476.
|
58 |
Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211.
|
59 |
Henriques-Antunes H, Cardoso RMS, Zonari A, et al. The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration[J]. ACS Nano, 2019, 13(8):8694-8707.
|
60 |
Lv K, Li Q, Zhang L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction[J]. Theranostics, 2019, 9(24):7403-7416.
|
61 |
Zhang K, Zhao X, Chen X, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Appl Mater Interfaces, 2018, 10(36):30081-30091.
|
62 |
Liu B, Lee BW, Nakanishi K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5):293-303.
|
63 |
Han C, Zhou J, Liang C, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair[J]. Biomater Sci, 2019, 7(7):2920-2933.
|
64 |
Kordelas L, Rebmann V, Ludwig AK, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease[J]. Leukemia, 2014, 28(4):970-3.
|
65 |
Ng KS, Smith JA, McAteer MP, et al. Bioprocess decision support tool for scalable manufacture of extracellular vesicles[J]. Biotechnol Bioeng, 2019, 116(2):307-319.
|
66 |
Watson DC, Bayik D, Srivatsan A, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles[J]. Biomaterials, 2016, 105:195-205.
|
67 |
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150:137-149.
|
68 |
Chung JJ, Han J, Wang LL, et al. Delayed delivery of endothelial progenitor cell-derived extracellular vesicles via shear thinning gel improves postinfarct hemodynamics[J]. J Thorac Cardiovasc Surg, 2020, 159(5):1825-1835.e2.
|
1 |
Eggers KM, Hjort M, Baron T, et al. Morbidity and cause-specific mortality in first-time myocardial infarction with nonobstructive coronary arteries[J]. J Intern Med, 2019,285(4):419-428.
|
2 |
Andersson C,Vasan RS. Epidemiology of cardiovascular disease in young individuals[J]. Nat Rev Cardiol, 2018, 15(4):230-240.
|
3 |
Prathipati P, Nandi SS, Mishra PK. Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy[J]. Stem Cell Rev Rep, 2017, 13(1):79-91.
|
4 |
Jung JH, Fu X,Yang PC. Exosomes generated from iPSC-derivatives: new direction for stem cell therapy in human heart diseases[J]. Circ Res, 2017, 120(2):407-417.
|
5 |
Kishore R, Khan M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair[J]. Circ Res, 2016, 118(2):330-43.
|
6 |
Sherif AY, Harisa GI, Alanazi FK, et al. Engineering of exosomes: steps towards green production of drug delivery systems[J]. Curr Drug Targets, 2019,20(15):1537-1549.
|
7 |
Ju C, Shen Y, Ma G, et al. Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium[J]. J Cardiovasc Transl Res, 2018, 11(5):420-428.
|
8 |
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2):428-445.e18.
|
9 |
Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells[J]. Immunity, 2014, 41(1):89-103.
|
10 |
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues[J]. Nature, 2017, 542(7642):450-455.
|
11 |
Lu D,Thum T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease[J]. Nat Rev Cardiol, 2019, 16(11):661-674.
|
12 |
Quezada C, Torres Á, Niechi I, et al. Role of extracellular vesicles in glioma progression[J]. Mol Aspects Med, 2018, 60:38-51.
|
13 |
Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4):656-673.
|
14 |
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs[J]. Nat Commun, 2013, 4:2980. doi: 10.1038/ncomms3980.
|
15 |
Kim VN, Han J,Siomi MC. Biogenesis of small RNAs in animals[J]. Nat Rev Mol Cell Biol,2009,10(2):126-139.
|
16 |
Gasperini M, Hill AJ, McFaline-Figueroa JL, et al. A genome-wide framework for mapping gene regulation via cellular genetic screens[J]. Cell, 2019,176(1-2):377-390.e19.
|
17 |
Zhang S, Teo KYW, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200(4):35-47.
|
18 |
Hu X, Xu Y, Zhong Z, et al. A Large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization[J]. Circ Res, 2016, 118(6):970-983.
|
19 |
Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway[J]. Stem Cell Res Ther, 2020, 11(1):36.
|
20 |
Peng Y, Zhao JL, Peng ZY, et al. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2[J]. Cell Death Dis, 2020, 11(5):317.
|
21 |
Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19[J]. Cardiovasc Res, 2020, 116(2):353-367.
|
22 |
Hong Y, He H, Jiang G, et al. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction[J]. Aging Cell, 2020, 19(4):e13128. doi: 10.1111/acel.13128.
|
23 |
Mayourian J, Ceholski DK, Gorski PA, et al. Exosomal microRNA-21- 5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility[J]. Circ Res, 2018, 122(7):933-944.
|
24 |
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119(6):125-137.
|
25 |
Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PLoS One, 2014, 9(2):e88685.
|
26 |
Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017:4150705. doi: 10.1155/2017/4150705.
|
27 |
Qian L, Van Laake LW, Huang Y, et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J]. J Exp Med, 2011, 208(3): 549-560.
|
28 |
Caravia XM, Fanjul V, Oliver E, et al. The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function[J]. PLoS Biol, 2018, 16(10):e2006247. doi: 10.1371/journal.pbio.2006247.
|
29 |
Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18(12):1355-1365.
|
30 |
Ganesan J, Ramanujam D, Sassi Y, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors[J]. Circulation, 2013, 127(21):2097-2106.
|
31 |
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5):2136-2146.
|
32 |
Rawal S, Munasinghe PE, Nagesh PT, et al. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart[J]. Clin Sci(Lond), 2017, 131(9):847-863.
|
33 |
Park H, Park H, Mun D, et al. Extracellular vesicles derived from hypoxic human mesenchymal stem cells attenuate GSK3β expression via miRNA-26a in an ischemia-reperfusion injury model[J]. Yonsei Med J, 2018, 59(6):736-745.
|
34 |
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA- 4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol, 2015, 182: 349-360.
|
35 |
Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8):1659-1670.
|
36 |
Nah J, Fernandez AF, Kitsis RN, et al. Does autophagy mediate cardiac myocyte death during stress?[J]. Circ Res, 2016, 119(8):893-895.
|
37 |
Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b[J]. Circ Res, 2018, 123(5):564-578.
|
38 |
Li J, Rohailla S, Gelber N, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning[J]. Basic Res Cardiol, 2014, 109(5): 423.
|
39 |
Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction[J]. J Biol Chem, 2019, 294(31):11665-11674.
|
40 |
Pan J, Alimujiang M, Chen Q, et al. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J]. J Cell Biochem, 2019, 120(3):4433-4443.
|