切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (01) : 8 -15. doi: 10.3877/cma.j.issn.2095-1221.2021.01.002

所属专题: 文献

论著

LncRNA ZNF667-AS1靶向miR-31-5p对食管癌细胞增殖、迁移和凋亡的机制研究
邱卫明1, 王建荣1, 徐志敏1, 缪玖麟1, 陈保华1, 汪芝珍1,()   
  1. 1. 335000 鹰潭,联勤保障部队第908医院普通外科
  • 收稿日期:2020-06-03 出版日期:2021-02-01
  • 通信作者: 汪芝珍

Mechanisms of LncRNA ZNF667-AS1 targeting miR-31-5p in proliferation, migration and apoptosis of esophageal carcinoma cells

Weiming Qiu1, Jianrong Wang1, Zhimin Xu1, Jiulin Miao1, Baohua Chen1, Zhizhen Wang1,()   

  1. 1. General Surgery, 908th Hospital of Joint Logistics Support Force, Yingtan 335000, China
  • Received:2020-06-03 Published:2021-02-01
  • Corresponding author: Zhizhen Wang
引用本文:

邱卫明, 王建荣, 徐志敏, 缪玖麟, 陈保华, 汪芝珍. LncRNA ZNF667-AS1靶向miR-31-5p对食管癌细胞增殖、迁移和凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 8-15.

Weiming Qiu, Jianrong Wang, Zhimin Xu, Jiulin Miao, Baohua Chen, Zhizhen Wang. Mechanisms of LncRNA ZNF667-AS1 targeting miR-31-5p in proliferation, migration and apoptosis of esophageal carcinoma cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(01): 8-15.

目的

探究长链非编码RNA (lncRNA)ZNF667-AS1通过靶向miR-31- 5p对食管癌细胞增殖和迁移的影响及潜在的机制。

方法

采用实时荧光定量PCR(qPCR)技术检测ZNF667-AS1在食管癌细胞Eca109、EC1、TE1和正常食管上皮细胞Het- 1A的表达水平,并选择表达差异最大的细胞株进行后续实验。采用脂质体转染技术将pcDNA3.1- ZNF667-AS1过表达重组载体质粒转染至人食管癌Eca109细胞,实验分为对照组(未行转染的Eca109细胞)、pcDNA3.1组(转染空载体质粒的Eca109细胞)和ZNF667- AS1组(转染pcDNA3.1- ZNF667- AS1质粒的Eca109细胞),qPCR技术检测pcDNA3.1- ZNF667-AS1的转染效果,噻唑蓝比色法(MTT)和平板克隆实验检测过表达ZNF667-AS1对Eca109细胞增殖能力的影响,Transwell实验检测Eca109细胞迁移能力,流式细胞术检测Eca109细胞凋亡率,Western blot检测Eca109细胞中G1/S-特异性周期蛋白-D1(Cyclin D1)、细胞周期依赖性激酶抑制因子(p21)、上皮标志物上皮型钙黏蛋白(E-cadherin)、间充质标志物神经型钙黏蛋白(N-cadherin)、波形蛋白(Vimentin)、B细胞淋巴瘤/白血病-2相关蛋白X(Bax)和B细胞淋巴瘤/白血病-2(Bcl-2)的表达水平,生物信息学预测ZNF667- AS1与miR- 31-5p的互补配对关系,荧光素酶报告实验和qPCR技术验证ZNF667-AS1和miR-31-5p的靶向调控关系。多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。

结果

与Het- 1A细胞相比,食管癌Eca109、EC1和TE1细胞中ZNF667-AS1的表达水平均降低(1.00±0.08比0.29±0.04,0.36±0.05,0.33±0.06),差异有统计学意义(P < 0.001)。与ZNF667-AS1组相比,对照组及pcDNA3.1组中ZNF667-AS1的表达水平(3.14±0.32比1.00±0.10,0.94±0.09),细胞活力[(63.42±3.75)﹪比100.00±4.85、(97.69±4.57)﹪],细胞克隆形成数[(34.26±3.52)个比(95.64±10.22)个、(92.80±10.04)个],Cyclin D1表达水平(0.26±0.05比0.75±0.08、0.71±0.07),迁移细胞数[(20.24±2.35)个比(63.55±6.04)个、(60.02±6.12)个],细胞中E-cadherin表达水平(0.19±0.02比0.48±0.05,0.49±0.05)和miR- 31-5p的表达水平(0.30±0.03比1.00±0.10、0.95±0.09)均升高,p21表达水平(0.79±0.09比0.24±0.05,0.26±0.06),细胞凋亡率[(29.17±1.26)﹪比(3.41±0.73)﹪,(3.72±0.78)﹪],细胞中N-cadherin(0.87±0.09比0.42±0.04,0.40±0.04)、Vimentin表达水平(0.82±0.08比0.44±0.04,0.44±0.04)均降低,差异有统计学意义(P均< 0.001),与对照组比较,pcDNA3.1组ZNF667-AS1的表达水平,细胞活力,细胞克隆形成数,Cyclin D1和p21表达水平,迁移细胞数,细胞中E-cadherin、N-cadherin、Vimentin和miR-31-5p表达水平,细胞凋亡率差异无统计学意义(P均> 0.05)。生物信息学预测发现ZNF667-AS1和miR-31-5p存在靶向结合位点;荧光素酶报告实验结果显示,与空载转染组比较,miR-31-5p组ZNF667-AS1-Wt相对荧光素酶活性(1.00±0.10比0.19±0.02)降低(P < 0.05),ZNF667-AS1-Mut相对荧光素酶活性比较,差异无统计学意义(P > 0.05)。

结论

过表达ZNF667-AS1能抑制食管癌Eca109细胞的增殖、迁移并诱导其凋亡,其机制可能与ZNF667-AS1靶向调控miR-31-5p有关。

Objective

To investigate the effects and mechanisms of long-chain non-coding RNA (lncRNA) ZNF667-AS1 on the proliferation and migration of esophageal cancer cells by targeting miR-31-5p.

Methods

Real-time fluorescence quantitative PCR (qPCR) was used to detect the expression levels of ZNF667-AS1 in esophageal cancer cells Eca109, EC1, TE1 and normal esophageal epithelial cells Het-1A, and the cell lines with the greatest difference in expression of ZNF667-AS1 were selected for subsequent experiments. PcDNA3.1-ZNF667-AS1 overexpression recombinant vector plasmid was transfected into human esophageal cancer Eca109 cells by liposome transfection technology. Three groups involved in this experiment, including control group (Eca109 cells untransfected) , pcDNA3.1 group (Eca109 cells transfected with empty vector plasmid) , and ZNF667-AS1 group (Eca109 cells transfected with pcDNA3.1-ZNF667-AS1 plasmid) . qPCR detected pcDNA3.1-ZNF667- transfection effect of AS1. Thiazolyl blue colorimetric assay (MTT) and plate cloning formation assay were used to detect the proliferation rate of Eca109 cells. Transwell assay to detect the migration ability of Eca109 cells. Flow cytometry was used to detect the apoptosis rate of Eca109 cells. The expression levels of G1 / S-specific cyclin-D1 (Cyclin D1) , cell cycle-dependent kinase inhibitor (p21) , and epithelial marker E-cadherin, mesenchymal markers N-cadherin, Vimentin, B-cell lymphoma/leukemia-2 related protein X (Bax) , and B-cell lymphoma/leukemia-2 (Bcl-2) proteins in Eca109 cells were detected by Western blot. Bioinformatics was used to predicte the complementary pairing relationship between ZNF667-AS1 and miR-31-5p. The luciferase reporter assay and qPCR technique was used to verify the targeted regulation relationship between ZNF667-AS1 and miR-31-5p. One-way analysis of variance was used to compare the difference among multiple groups, and SNK-q test was used to compare the difference between groups.

Results

The expression levels of ZNF667-AS1 in normal esophageal epithelial Het-1A cells was higher than that in esophageal cancer Eca109, EC1 and TE1 cells (1.00±0.08 vs 0.29±0.04, 0.36±0.05, 0.33±0.06) , and the difference was statistically significant (P < 0.001) . Compared with the ZNF667-AS1 group, the expression level of ZNF667-AS1 in the control group and pcDNA 3.1 group (3.14±0.32 vs 1.00±0.10, 0.94±0.09) , cell viability [ (63.42±3.75) ﹪vs 100.00 ± 4.85, (97.69±4.57) ﹪], cell clonogenic number (34.26±3.52 vs 95.64±10.22, 92.80±10.04) . Cyclin D1 expression level (0.26±0.05 vs 0.75±0.08, 0.71± 0.07) , number of migrating cells (20.24±2.35 vs 63.55±6.04, 60.02±6.12) , E-cadherinherin expression level in cells (0.19 ±0.02 vs 0.48 ±0.05, 0.49 ±0.05) and the expression levels of miR- 31- 5p (0.30±0.03 vs 1.00 ± 0.10, 0.95±0.09) were all elevated, p21 expression level (0.79±0.09 vs 0.24±0.05, 0.26±0.06) , apoptosis rates [ (29.17±1.26) ﹪vs (3.41±0.73) ﹪, (3.72± 0.78) ﹪) ].The expression of N-cadherin (0.87±0.09 vs 0.42±0.04, 0.40±0.04) and vimentin expression (0.82±0.08 vs 0.44±0.04, 0.44±0.04) were significantly decreased (P < 0.001) . Compared with the control group, the expression levels of ZNF667-AS1, cell viability, number of cell clone formation, expression levels of Cyclin D1 and p21, number of migrating cells, expression levels of E-cadherin, N-cadherin, Vimentin and miR-31-5p in the pcDNA3.1 group, and the apoptotic rate were not significantly different (all P > 0.05) . Bioinformatics predictions revealed that ZNF667- AS1 and miR-31-5p had targeted binding sites; the results of luciferase reporter assay showed that the relative luciferase activity of ZNF667-AS1-Wt in the miR-31-5p group was decreased (1.00±0.10 vs 0.19±0.02) (P < 0.05) . Compared with the empty transfection group, the relative luciferase activity of ZNF667-AS1-Mut was not significantly different (P > 0.05) .

Conclusion

Overexpression of ZNF667-AS1 can inhibit the proliferation, migration and induce apoptosis of Eca109 cells, which may be related to the targeted regulation of miR-31-5p by ZNF667-AS1.

表1 引物序列信息
表2 ZNF667-AS1在不同细胞系中的表达水平比较( ± s
图1 Western blot检测Eca109细胞中过表达ZNF667-AS1 CyclinD1和p21的影响
表3 过表达ZNF667-AS1对Eca109细胞活力、克隆形成数及增殖相关蛋白表达量的影响( ± s
图2 倒置显微镜下观察过表达ZNF667-AS1对Eca109细胞迁移影响(结晶紫染色,×400)
图3 Western blot检测Eca109细胞中过表达ZNF667-AS1对E-cadherin、N-cadherin和Vimentin的影响
表4 过表达ZNF667-AS1对Eca109细胞中E-cadherin、N-cadherin和Vimentin表达水平的影响( ± s
图4 过表达ZNF667-AS1对Eca109细胞凋亡的影响
表5 过表达ZNF667-AS1对Eca109细胞中凋亡率及凋亡相关蛋白表达的影响( ± s
图5 生物信息学软件预测ZNF667-AS1和miR-31-5p靶向结合位点示意图
表6 过表达ZNF667-AS1对Eca109细胞相对荧光素酶活性的影响( ± s
1
Vaseghi MP, Rezaei-Tavirani M, Zali H, et al. Network analysis of common genes related to esophageal, gastric, and colon cancers[J]. Gastroenterol Hepatol Bed Bench, 2017, 10(4):295-302.
2
Emi M, Hihara J, Hamai Y, et al. Clinicopathologic features of submucosal esophageal squamous cell carcinoma[J]. Ann Thorac Surg, 2017, 104(6):1858-1864.
3
Kanamori J, Aokage K, Hishida T, et al. The role of pulmonary resection in tumors metastatic from esophageal carcinoma[J]. Jap J Clin Oncol, 2017, 47(1):25-31.
4
Gopal S K, Greening D W, Rai A, et al. Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition[J]. Biochem J, 2017, 474(1):21-45.
5
Ridder K, Sevko A, Heide J, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment[J]. Oncoimmunology, 2015, 4(6):e1008371.
6
Sugase T, Takahashi T, Serada S, et al. Suppressor of cytokine signaling-1 gene therapy induces potent antitumor effect in patient-derived esophageal squamous cell carcinoma xenograft mice[J]. Int J Cancer, 2017, 140(11):2608-2621.
7
Song J, Ye A, Jiang E, et al. Reconstruction and analysis of the aberrant lncRNA-miRNA-mRNA network based on competitive endogenous RNA in CESC[J]. J Cell Biochem, 2018, 119(8):6665-6673.
8
Wang W, Wei C, Li P, et al. Integrative analysis of mRNA and lncRNA profiles identified pathogenetic lncRNAs in esophageal squamous cell carcinoma[J]. Gene, 2018, 661:169-175.
9
Alaei S, Sadeghi B, Najafi A, et al. LncRNA and mRNA integration network reconstruction reveals novel key regulators in esophageal squamous-cell carcinoma[J]. Genomics, 2019, 111(1):76-89.
10
Vrba L, Garbe JC, Stampfer MR, et al. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers[J]. Epigenetics, 2015, 10(11):1074-1083.
11
Dong Z, Zhang A, Liu S, et al. Aberrant methylation-mediated silencing of lncRNA MEG3 functions as a ceRNA in esophageal cancer[J]. Mol Cancer Res, 2017, 15(7):800-810.
12
Chen M, Xia Z, Chen C, et al. LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway[J]. Anticancer drugs, 2018, 29(8):767-773.
13
Shi H, Shi J, Zhang Y, et al. Long non-coding RNA DANCR promotes cell proliferation, migration, invasion and resistance to apoptosis in esophageal cancer[J]. J Thorac Dis, 2018, 10(5):2573-2582.
14
吴璇,邝钢,任利兵, 等. 长链非编码RNA ZNF667-AS1在食管鳞状细胞癌组织中的表达及其DNA甲基化状态的研究[J]. 肿瘤防治研究, 2018, 45(12):976-980.
15
Li CY, Zhang WW, Xiang JL, et al. Identification of microRNAs as novel biomarkers for esophageal squamous cell carcinoma: a study based on The Cancer Genome Atlas (TCGA) and bioinformatics[J]. Chin Med J (Engl). 2019, 132(18):2213-2222.
16
Li CQ, Huang GW, Wu ZY, et al. Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma[J]. Oncogenesis, 2017, 6(2):e297.
17
Zhao LP, Li RH, Han DM, et al. Independent prognostic Factor of low-expressed LncRNA ZNF667-AS1 for cervical cancer and inhibitory function on the proliferation of cervical cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5353-5360.
18
Meng W, Cui W, Zhao L, et al. Aberrant methylation and downregulation of ZNF667-AS1 and ZNF667 promote the malignant progression of laryngeal squamous cell carcinoma[J]. J Biomed Sci, 2019, 26(1):13.
19
Xu X, Yang C, Chen J, et al. Interleukin-23 promotes the migration and invasion of gastric cancer cells by inducing epithelial-to-mesenchymal transition via the STAT3 pathway[J]. Biochem Biophys Res Commun, 2018, 499(2):273-278.
20
Yu Y, Nangiamakker P, Farhana L, et al. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells[J]. Mol Cancer, 2017, 16(1):155.
21
Tian Y, Ma X, Lv C, et al. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis[J]. Elife, 2017, 6:e29538.
22
Wei C, Pan Y, Huang H, et al. Estramustine phosphate induces prostate cancer cell line PC3 apoptosis by down-regulating miR-31 levels[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1):40-45.
23
Lai YH, Liu H, Chiang WF, et al. MiR-31-5p-ACOX1 axis enhances tumorigenic fitness in oral squamous cell carcinoma via the promigratory prostaglandin E2[J]. Theranostics, 2018, 8(2):486-504.
24
罗君,凌志强,彭兵锋, 等. MicroRNA-31在食管鳞状细胞癌中的表达及其与预后的关系[J]. 中国癌症杂志, 2013, 23(7):487-492.
25
Ning Z, Zhu H, Li F, et al. Tumor suppression by miR-31 in esophageal carcinoma is p21-dependent[J]. Genes Cancer. 2014, 5(11-12):436-444.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[7] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[8] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[9] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[12] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[13] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要