1 |
Gentek R, Ghigo C, Hoeffel G, et al. Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult[J]. J Exp Med, 2018, 215(12):2994-3005.
|
2 |
Hoytema van Konijnenburg DP, Mucida D. Intraepithelial lymphocytes[J]. Curr Biol, 2017, 27(15):R737-R739.
|
3 |
Ramirez K, Witherden DA, Havran WL. All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury[J]. Cell Immunol, 2015, 296(1):57-61.
|
4 |
Keyes BE, Liu S, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin[J]. Cell, 2016, 167(5):1323-1338.e14.
|
5 |
Chodaczek G, Toporkiewicz M, Zal MA, et al. Epidermal T cell dendrites serve as conduits for bidirectional trafficking of granular cargo[J]. 2018, 9:1430.
|
6 |
Takashima A, Bergstresser PR. Cytokine-mediated communication by keratinocytes and Langerhans cells with dendritic epidermal T cells[J]. Semin Immunol, 1996, 8(6):333-339.
|
7 |
Havran WL, Jameson JM. Epidermal T cells and wound healing[J]. J Immunol, 2010, 184(10):5423-5428.
|
8 |
Jameson J, Ugarte K, Chen N, et al. A role for skin gammadelta T cells in wound repair[J]. Science, 2002, 296(5568):747-749.
|
9 |
Sorg H, Tilkorn DJ, Hager S, et al. Skin wound healing: an update on the current knowledge and concepts[J]. Eur Surg Res, 2017, 58(1-2):81-94.
|
10 |
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing[J]. Br J Dermatol, 2015, 173(2):370-378.
|
11 |
Xiong N, Raulet DH. Development and selection of gammadelta T cells[J]. Immunol Rev, 2007, 215:15-31.
|
12 |
Boismenu R, Havran WL. Intraepithelial gamma delta T cells exposed by functional genomics[J]. Genome Biol, 2001, 2(11): REVIEWS1031.
|
13 |
Komori HK, Witherden DA, Kelly R, et al. Cutting edge: dendritic epidermal γδ T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding[J]. J Immunol, 2012, 188(7):2972-2976.
|
14 |
Witherden DA, Verdino P, Rieder SE, et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation[J]. Science, 2010, 329(5996):1205-1210.
|
15 |
Yoshida S, Mohamed RH, Kajikawa M, et al. Involvement of an NKG2D ligand H60c in epidermal dendritic T cell-mediated wound repair[J]. J Immunol, 2012, 188(8):3972-3979.
|
16 |
Sutoh Y, Mohamed RH, Kasahara M. Origin and evolution of dendritic epidermal T cells[J]. Front Immunol, 2018, 9:1059.
|
17 |
Toulon A, Breton L, Taylor KR, et al. A role for human skin-resident T cells in wound healing[J]. J Exp Med, 2009, 206(4):743-750.
|
18 |
Marshall AS, Silva JR, Bannerman CA, et al. Skin-Resident γδ T cells exhibit site-specific morphology and activation states[J]. J Immunol Res, 2019, 2019:9020234.
|
19 |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663):1532-1535.
|
20 |
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity, 2016, 44(3):450-462.
|
21 |
Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages[J]. Annu Rev Physiol, 2017, 79:593-617.
|
22 |
Redd MJ, Cooper L, Wood W, et al. Wound healing and inflammation: embryos reveal the way to perfect repair[J]. Philos Trans R Soc Lond B Biol Sci, 2004, 359(1445):777-784.
|
23 |
Moore AL, Marshall CD, Barnes LA, et al. Scarless wound healing: transitioning from fetal research to regenerative healing[J]. Wiley Interdiscip Rev Dev Biol, 2018, 7(2): 10.1002/wdev.309.
|
24 |
Gawronska-Kozak B, Bogacki M, Rim JS, et al. Scarless skin repair in immunodeficient mice[J]. Wound Repair Regen, 2006, 14(3):265-276.
|
25 |
Parnham A, Bousfield C. The influence of matrix metalloproteases and biofilm on chronic wound healing: a discussion[J]. Br J Community Nurs, 2018, 23 (Sup3):S22-S29.
|
26 |
Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: positive actions and negative reactions[J]. Adv Wound Care(New Rochelle), 2013, 2(7):379-388.
|
27 |
Nosbaum A, Prevel N, Truong HA, et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing[J]. J Immunol, 2016, 196(5):2010-2014.
|
28 |
Davis PA, Corless DJ, Aspinall R, et al. Effect of CD4(+) and CD8(+) cell depletion on wound healing[J]. Br J Surg, 2001, 88(2):298-304.
|
29 |
Macleod AS, Havran WL. Functions of skin-resident γδ T cells[J]. Cell Mol Life Sci, 2011, 68(14):2399-2408.
|
30 |
黄华. DETC在皮肤移植免疫排斥反应中作用及机制的初步研究[D]. 重庆:第三军医大学, 2015.
|
31 |
燕荣帅, 黄华, 刘美希, 等. 小鼠DETCs表型及功能的初步研究[J]. 免疫学杂志, 2015, 31(3):214-217.
|
32 |
Boismenu R, Feng L, Xia YY, et al. Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia[J]. J Immunol, 1996, 157(3):985-992.
|
33 |
Matsue H, Cruz PD Jr, Bergstresser PR, et al. Profiles of cytokine mRNA expressed by dendritic epidermal T cells in mice[J]. J Invest Dermatol, 1993, 101(4):537-542.
|
34 |
van der Fits L, Mourits S, Voerman JSA, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis[J]. J Immunol, 2009, 182(9):5836-5845.
|
35 |
Sutton CE, Lalor SJ, Sweeney CM, et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity[J]. Immunity, 2009, 31(2):331-341.
|
36 |
Li Y, Wang Y, Zhou L, et al. Vγ4 T cells inhibit the pro-healing functions of dendritic epidermal T cells to delay skin wound closure through IL-17A[J]. Front Immunol, 2018, 9:240.
|
37 |
Li Y, Wu J, Luo G, et al. Functions of Vγ4 T cells and dendritic epidermal T cells on skin wound healing[J]. Front Immunol, 2018, 9:1099.
|
38 |
MacLeod AS, Hemmers S, Garijo O, et al. Dendritic epidermal T cells regulate skin antimicrobial barrier function[J]. J Clin Invest, 2013, 123(10):4364-4374.
|
39 |
Neuman MG, Nanau RM, Oruña-Sanchez L, et al. Hyaluronic acid and wound healing[J]. J Pharm Pharm Sci, 2015, 18(1):53-60.
|
40 |
Jameson JM, Cauvi G, Sharp LL, et al. Gammadelta T cell-induced hyaluronan production by epithelial cells regulates inflammation[J]. J Exp Med, 2005, 201(8):1269-1279.
|
41 |
Noble PW. Hyaluronan and its catabolic products in tissue injury and repair[J]. Matrix Biol, 2002, 21(1):25-29.
|
42 |
Litwiniuk M, Krejner A, Speyrer MS, et al. Hyaluronic acid in inflammation and tissue regeneration[J]. Wounds, 2016, 28(3):78-88.
|
43 |
Zhu H, Ka B, Murad F. Nitric oxide accelerates the recovery from burn wounds[J]. World J Surg, 2007, 31(4):624-631.
|
44 |
Oppeltz RF, Rani M, Zhang Q, et al. Gamma delta (γδ) T-cells are critical in the up-regulation of inducible nitric oxide synthase at the burn wound site[J]. Cytokine, 2012, 60(2):528-534.
|
45 |
Kleinman HK, Sosne G. Thymosin β4 promotes dermal healing[J]. Vitam Horm, 2016, 102:251-275.
|
46 |
Renga G, Oikonomou V, Stincardini C, et al. Thymosin β4 limits inflammation through autophagy[J]. Expert Opin Biol Ther, 2018, 18 (sup1):171-175.
|
47 |
Girardi M, Sherling MA, Filler RB, et al. Anti-inflammatory effects in the skin of thymosin-beta4 splice-variants[J]. Immunology, 2003, 109(1):1-7.
|
48 |
Egan PJ, Carding SR. Downmodulation of the inflammatory response to bacterial infection by gammadelta T cells cytotoxic for activated macrophages[J]. J Exp Med, 2000, 191(12):2145-2158.
|
49 |
Daniel T, Thobe BM, Chaudry IH, et al. Regulation of the postburn wound inflammatory response by gammadelta T-cells[J]. Shock, 2007, 28(3):278-283.
|
50 |
Rani M, Zhang Q, Schwacha MG. Gamma delta T cells regulate wound myeloid cell activity after burn[J]. Shock, 2014, 42(2):133-141.
|
51 |
Rani M, Zhang Q, Scherer MR, et al. Activated skin γδ T-cells regulate T-cell infiltration of the wound site after burn[J]. Innate Immun, 2015, 21(2):140-150.
|
52 |
Schwacha MG, Rani M, Zhang Q, et al. Mitochondrial damage-associated molecular patterns activate γδ T-cells[J]. Innate Immun, 2014, 20(3):261-268.
|
53 |
Rawlingson A, Shendi K, Greenacre SA, et al. Functional significance of inducible nitric oxide synthase induction and protein nitration in the thermally injured cutaneous microvasculature[J]. Am J Pathol, 2003, 162(4):1373-1380.
|
54 |
Siegert S, Huang HY, Yang CY, et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide[J]. PLoS One, 2011, 6(11):e27618.
|