切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (06) : 346 -353. doi: 10.3877/cma.j.issn.2095-1221.2020.06.005

所属专题: 文献

论著

人CD137抗体促进NK细胞对乳腺癌细胞特异性杀伤作用的体外研究
刘鲁宁1, 陈雪梅1, 马恩奇1, 田清艳1, 刘倩倩1, 刘韬1,()   
  1. 1. 518001 深圳市罗湖区人民医院 (深圳大学第三附属医院)肿瘤康复科
  • 收稿日期:2020-03-06 出版日期:2020-12-01
  • 通信作者: 刘韬
  • 基金资助:
    深圳市医学重点学科建设经费资助(SZXK062); 深圳市科技创新项目(JCYJ20170307171034705、JCYJ201704 12155231633)

Effects of human CD137 antibody on specific cytotoxicity in NK cells against breast cancer cells in vitro

Luning Liu1, Xuemei Chen1, Enqi Ma1, Qingyan Tian1, Qianqian Liu1, Tao Liu1,()   

  1. 1. Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, the Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
  • Received:2020-03-06 Published:2020-12-01
  • Corresponding author: Tao Liu
  • About author:
    Corresponding author: Liu Tao, Email:
引用本文:

刘鲁宁, 陈雪梅, 马恩奇, 田清艳, 刘倩倩, 刘韬. 人CD137抗体促进NK细胞对乳腺癌细胞特异性杀伤作用的体外研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 346-353.

Luning Liu, Xuemei Chen, Enqi Ma, Qingyan Tian, Qianqian Liu, Tao Liu. Effects of human CD137 antibody on specific cytotoxicity in NK cells against breast cancer cells in vitro[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(06): 346-353.

目的

探讨人自然杀伤(NK)细胞在CD137抗体作用下通过抗体依赖性细胞毒性作用(ADCC)介导对乳腺癌细胞的杀伤作用。

方法

NK细胞表型和细胞因子检测实验分组:阴性对照组(未用人CD137抗体处理的NK细胞)、CD137抗体处理组(10 μg/mL人CD137抗体处理4 h的NK细胞);NK细胞毒性检测实验分组:根据体系中是否添加NK细胞、人CD137抗体和西妥昔单抗分为8组。流式细胞术检测两组NK细胞表面CD16分子的表达情况,酶联免疫吸附测定(ELISA)法检测两组NK细胞培养上清液中干扰素(IFN)-γ和肿瘤坏死因子(TNF)-α的浓度,乳酸脱氢酶(LDH)法检测8组反应体系中表皮生长因子受体(EGFR)高表达乳腺癌细胞系MDA-MB-231和EGFR低表达乳腺癌细胞系MDA-MB-453的杀伤比例,并采用t检验或析因分析进行统计学分析。

结果

与阴性对照组比较,CD137抗体处理组CD16+NK细胞比例(79.57﹪ ±0.92﹪比90.43﹪±0.67﹪)、细胞因子IFN-γ浓度[(388.90±7.02) pg/ mL比(523.90±1.90)pg/ mL]和TNF-α浓度[(20.59±4.09)pg/mL比(47.22±2.14)pg/mL]均升高,差异有统计学意义(P < 0.05);MDA-MB-231细胞杀伤的三因素析因分析结果显示:NK细胞、人CD137抗体和西妥昔单抗3个因素分别对MDA-MB-231细胞的杀伤都有作用(F = 5227.276、201.473、1792.242,P均< 0.001),3个因素两两之间的交互作用对MDA-MB-231细胞的杀伤也都有作用(F =183.903、1517.187、33.483,P均< 0.001),3个因素的二级交互作用差异有统计学意义(F = 41.505,P < 0.001)。

结论

人CD137抗体可增强NK细胞分泌细胞毒性因子IFN-γ和TNF-α的能力,同时可上调NK细胞表面CD16分子的表达,从而使得NK细胞可能通过西妥昔单抗介导的ADCC作用增强对表皮生长因子受体(EGFR)高表达乳腺癌细胞的杀伤作用。

Objective

Investigate the killing effect of NK cells treated by CD137 against breast cancer cells mediated by antibody dependent cell cytotoxicity (ADCC) .

Methods

Groups in phenotype and cytokine detection experiments: negative control group (NK cells not treated with human CD137 antibody) , CD137 antibody treatment group (NK cells treated with 10 μg/mL human CD137 antibody for 4 h) . Groups in cytotoxicity experiment: there are 8 groups according to the addition of NK cells, human CD137 antibody and cetuximab in the system. The ratio of CD16+ NK cell was detected by flow cytometry, the concentration of IFN-γ and TNF-α in the supernatant of NK cell culture media was detected by enzyme linked immunosorbent assay (ELISA) , and the cytotoxicity of NK cells against MDA-MB-231 and MDA-MB-453 cell lines mediated by cetuximab was measured by lactate dehydrogenase (LDH) . t test or factorial analysis was applied for statistical analysis.

Results

Compared with NC group, the ratio of CD16+ NK cells and the concentration of IFN-γ and TNF-α in the CD137 antibody treatment group was significantly higher than that of the control group (79.57﹪± 0.92﹪vs 90.43± 0.67, 388.90 pg/mL ± 7.02 pg/mL vs 523.90 pg/mL±1.90 pg/ mL, 20.59 pg/mL±4.09 pg/mL vs 47.22 pg/mL±2.14 pg/mL, P < 0.05) . The concentration of IFN-γ and TNF-α secreted from CD137 antibody treated NK cells was (523.90±1.90) pg/mL and (47.22±2.14) pg/mL, higher than that of the control group (388.90±7.02) pg/mL (P < 0.01) and (20.59±4.09) pg/mL (P < 0.05) respectively. The results of three factor factorial analysis showed that NK cells, human CD137 antibody and cetuximab could kill MDA-MB-231 cells (F = 5227.276, 201.473, 1792.242, P < 0.001) , and the interaction of the three factors also had effect on the killing of MDA-MB-231 cells (F = 183.903, 1517.187, 33.483, P < 0.001) . The secondary interaction of the three factors was also statistically significant (F = 41.505, P < 0.001) .

Conclusion

All above, we have presented that CD137 antibody can enhance the secretion ability of NK cells to secrete IFN-γ and TNF-α. Meanwhile, it could upregulate the expression of CD16 molecules on the surface of NK cells, so that NK cells may enhance the cytotoxicity against epidermal growth factor receptor (EGFR) positive breast cancer cells through ADCC mediated by cetuximab.

表1 乳腺癌细胞杀伤实验分组设计
图1 倒置显微镜下观察诱导培养的NK细胞(a、c图×100,b、d图×200)
图2 NK细胞诱导培养16 d的生长曲线
图3 培养第16天NK细胞的流式检测
图4 两组NK细胞表面CD16表达比例检测
图5 NK细胞培养上清液中细胞因子浓度比较
图6 倒置荧光显微镜观察乳腺癌细胞MDA-MB-453和MDA-MB-231 (免疫荧光染色,×400)
图7 Western blot检测乳腺癌细胞中EGFR蛋白水平
图8 乳腺癌细胞MDA-MB-453的杀伤比例统计
表2 各组乳腺癌细胞的杀伤比例( ± s
表3 乳腺癌细胞杀伤实验结果的三因素析因分析结果
图9 乳腺癌细胞MDA-MB-231的杀伤比例统计图
1
Tajbakhsh A, Rivandi M, Abedini S, et al. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): a review[J]. Crit Rev Oncol Hematol, 2019, 140:17-27.
2
Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here[J]. Cancer, 2018, 124(10):2086-2103.
3
O'Reilly EA, Gubbins L, Sharma S, et al. The fate of chemoresistance in triple negative breast cancer (TNBC)[J]. BBA Clin, 2015, 3:257-275.
4
Zhang M, Zhang X, Zhao S, et al. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients[J]. Target Oncol, 2014, 9(4):349-357.
5
Bianco R, Gelardi T, Damiano V, et al. Rational bases for the development of EGFR inhibitors for cancer treatment[J]. Int J Biochem Cell Biol, 2007, 39(7-8):1416-1431.
6
Sebastian S, Settleman J, Reshkin SJ, et al. The complexity of targeting EGFR signalling in cancer: from expression to turnover[J]. Biochim Biophys Acta, 2006, 1766(1):120-139.
7
Caras I, Grigorescu A, Stavaru C, et al. Evidence for immune defects in breast and lung cancer patients[J]. Cancer Immunol Immunother, 2004, 53(12):1146-1152.
8
Piroozmand A, Hassan ZM. Evaluation of natural killer cell activity in pre and post treated breast cancer patients[J]. J Cancer Res Ther, 2010, 6(4):478-481.
9
Mamessier E, Sylvain A, Thibult ML, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity[J]. J Clin Invest, 2011, 121(9):3609-3622.
10
Bordon Y. Tumour immunology: Natural killer cells spy greedy tumours[J]. Nat Rev Immunol, 2018, 18(2):77.
11
Nagler A, Lanier LL, Cwirla S, et al. Comparative studies of human FcRIII-positive and negative natural killer cells[J]. J Immunol, 1989, 143(10):3183-3191.
12
Tsukerman P, Stern-Ginossar N, Yamin R, et al. Expansion of CD16 positive and negative human NK cells in response to tumor stimulation[J]. Eur J Immunol, 2014, 44(5):1517-1525.
13
Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5):503-510.
14
Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions[J]. J Allergy Clin Immunol, 2013, 132(3):536-544.
15
Adotevi O, Godet Y, Galaine J, et al. In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: a phase I clinical trial[J]. Oncoimmunology, 2018, 7(5):e1424673.
16
Vidard L, Dureuil C, Baudhuin J, et al. CD137 (4-1BB) engagement fine-tunes synergistic IL-15- and IL-21-driven nk cell proliferation[J]. J Immunol, 2019, 203(3):676-685.
17
Misumi T, Tanabe K, Fujikuni N, et al. Stimulation of natural killer cells with rhCD137 ligand enhances tumor-targeting antibody efficacy in gastric cancer[J]. PloS one, 2018, 13(10):e0204880.
18
O'Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory[J]. Immunity, 2015, 43(4):634-645.
19
Siegler EL, Zhu Y, Wang P, et al. Off-the-shelf CAR-NK cells for cancer immunotherapy[J]. Cell stem cell, 2018, 23(2):160-161.
20
Rezvani K, Rouce R, Liu E, et al. Engineering natural killer cells for cancer immunotherapy[J]. Mol Ther, 2017, 25(8):1769-1781.
21
Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy[J]. Acta Pharmacol Sin, 2018, 39(2):167-176.
22
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy[J]. Nat Rev Drug Discov, 2020, 19(3):200-218.
23
Oberschmidt O, Morgan M, Huppert V, et al. Development of automated separation, expansion, and quality control protocols for clinical-scale manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering[J]. Hum Gene Ther Methods, 2019, 30(3):102-120.
24
Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors[J]. Nat Rev Immunol, 2015, 15(4):243-254.
25
Ng YY, Tay JCK, Wang S. CXCR1 Expression to improve anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts[J]. Mol Ther Oncolytics, 2020, 16:75-85.
26
Hu W, Wang G, Huang D, et al. Cancer immunotherapy based on natural killer cells: current progress and new opportunities[J]. Front Immunol, 2019, 10:1205.
27
Modi S, D'Andrea G, Norton L, et al. A phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer[J]. Clin Breast Cancer, 2006, 7(3):270-277.
[1] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[2] 邵华, 那子悦, 荆慧, 李博, 王秋程, 程文. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 849-853.
[3] 张旭, 徐建平, 苏冬明, 王彩芬, 王大力, 张文智. 男性乳腺肿块的超声造影特征[J]. 中华医学超声杂志(电子版), 2023, 20(08): 854-859.
[4] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[5] 余楷婷, 王东, 钟豪, 何美芳, 王菊芳. 纤维连接蛋白1在乳腺癌中的表达及其与人类表皮生长因子受体2的相关性研究[J]. 中华普通外科学文献(电子版), 2023, 17(03): 203-210.
[6] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[7] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[8] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[9] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[10] 刘付有欢, 吴秀芹, 邓翠婷, 苏青. 基于模型的西妥昔单抗治疗胃癌细胞系的反应和耐药因素分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 385-388.
[11] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[12] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[13] 代叶梅, 苏晓乐, 王利华. 膜性肾病靶抗原的研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 282-286.
[14] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要