切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 172 -176. doi: 10.3877/cma.j.issn.2095-1221.2020.03.006

所属专题: 文献

综述

小胶质细胞对神经干细胞调控机制的研究进展
王泽宁1, 侯博儒1, 姜呈1, 任海军1,()   
  1. 1. 730000 兰州大学第二临床医学院第二医院神经外科
  • 收稿日期:2020-03-06 出版日期:2020-06-01
  • 通信作者: 任海军
  • 基金资助:
    兰州大学第二医院萃英科技创新计划(CY2018-MS08)

Research progress of the regulating mechanisms of microglia on neural stem cells

Zening Wang1, Boru Hou1, Cheng Jiang1, Haijun Ren1,()   

  1. 1. Department of Neurosurgery, Second Hospital, Second Medical College, Lanzhou University, Lanzhou 730000, China
  • Received:2020-03-06 Published:2020-06-01
  • Corresponding author: Haijun Ren
  • About author:
    Corresponding author: Ren Haijun, Email:
引用本文:

王泽宁, 侯博儒, 姜呈, 任海军. 小胶质细胞对神经干细胞调控机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(03): 172-176.

Zening Wang, Boru Hou, Cheng Jiang, Haijun Ren. Research progress of the regulating mechanisms of microglia on neural stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(03): 172-176.

脑损伤与神经炎症密切相关,小胶质细胞是这一过程中的关键因素。小胶质细胞可以获得促炎或抗炎的特性,但这如何影响神经干细胞(NSCs)仍有争议。小胶质细胞在不同的条件下,可以极化为M1型小胶质细胞和M2型小胶质细胞。不同类型的小胶质细胞对NSCs的调控作用不同。但目前关于这方面的研究并未详细阐明具体的作用机制。本文就不同分化类型的小胶质细胞对NSCs调控机制的研究进展进行综述。

Brain injury is closely related to neuro inflammation and microglia is one of the key factors in the brain injury. Microglia could obtain the pro-inflammation or anti-inflammation charaters, but how could them affects neural stem cells (NSCs) was still controversial. Microglia can polarize into M1 type microglia and M2 type microglia under different conditions, which have different effects on the regulation of neural stem cells. The mechanism has not yet been elucidated, this article reviews the regulation mechanisms of different types of microglia on neural stem cells.

图1 小胶质细胞对神经干细胞调控机制
1
Grassivaro F, Menon R, Acquaviva M, et al. Convergence between microglia and peripheral macrophages phenotype during development and neuroinflammation[J]. J Neurosci, 2020, 40(4): 784-795.
2
Gogoleva VS, Drutskaya MS, Atretkhany KS. [The role of microglia in the homeostasis of the central nervous system and neuroinflammation][J]. Mol Biol (Mosk), 2019, 53(5): 790-798.
3
Tong CK, Vidyadaran S. Role of microglia in embryonic neurogenesis[J]. Exp Biol Med (Maywood), 2016, 241(15): 1669-1675.
4
Bennett ML, Bennett FC. The influence of environment and origin on brain resident macrophages and implications for therapy[J]. Nat Neurosci, 2020, 23(2): 157-166.
5
Streit WJ, Xue QS. Life and death of microglia[J]. J Neuroimmune Pharmacol, 2009, 4(4): 371-379.
6
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35:441-468.
7
Orihuela R, Mcpherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4): 649-665.
8
Laffer B, Bauer D, Wasmuth S, et al. Loss of IL-10 promotes differentiation of microglia to a M1 phenotype[J]. Front Cell Neurosci, 2019, 13:430.
9
Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity[J]. Wiley Interdiscip Rev Dev Biol, 2016, 5(6): 640-658.
10
Lim DA, Alvarez-Buylla A. The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a018820.
11
Schlagal CR, Wu P. Tipsy neural stem cells: chronic effects of alcohol on the brain[J]. Neural Regen Res, 2019, 14(1):67-68.
12
Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity[J]. Semin Cell Dev Biol, 2019, 95:42-53.
13
Tchieu J, Calder EL, Guttikonda SR, et al. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells[J]. Nat Biotechnol, 2019, 37(3): 267-275.
14
Sueda R, Imayoshi I, Harima Y, et al. High Hes1 expression and resultant ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain[J]. Gene Dev, 2019, 33(9-10): 511-523.
15
Manning CS, Biga V, Boyd J, et al. Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis[J]. Nat Commun, 2019, 10(1): 2835.
16
Zhao X, Li J, Sun H. CD200-CD200R interaction: an important regulator after stroke[J]. Front Neurosci, 2019, 13: 840.
17
Ahn JH, Kim DW, Park JH, et al. Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia[J]. Int J Mol Med, 2019, 44(3): 939-948.
18
Vay SU, Flitsch LJ, Rabenstein M, et al. The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo[J]. J Neuroinflamm, 2018, 15(1): 226.
19
Gu F, Wang J, Fu L, et al. Co-culture with microglia promotes neural stem cells differentiation into astrocytes[J]. Chin Med J (Engl), 2011, 124(20): 3394-3398.
20
Osman AM, Rodhe J, Shen X, et al. The secretome of microglia regulate neural stem cell function[J]. Neuroscience, 2019, 405:92-102.
21
Costa C, Eixarch H, Martínez-Sáez E, et al. Expression of bone morphogenetic proteins in multiple sclerosis lesions[J]. Am J Pathol, 2019, 189(3): 665-676.
22
Chen J, Van Gulden S, Mcguire TL, et al. BMP-responsive protease HtrA1 is differentially expressed in astrocytes and regulates astrocytic development and injury response[J]. J Neurosci, 2018, 38(15): 3840-3857.
23
Hu JG, Zhang YX, Qi Q, et al. Expression of BMP-2 and BMP-4 proteins by type-1 and type-2 astrocytes induced from neural stem cells under different differentiation conditions[J]. Acta Neurobiol Exp (Wars), 2012, 72(1): 95-101.
24
Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development[J]. Cell Res, 1999, 9(3): 179-188.
25
Wu X, Zhao X, Miao X. MicroRNA-374b promotes the proliferation and differentiation of neural stem cells through targeting Hes1[J]. Biochem Biophys Res Commun, 2018, 503(2): 593-599.
26
Seth KA, Majzoub JA. Repressor element silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) can act as an enhancer as well as a repressor of corticotropin-releasing hormone gene transcription[J]. J Biol Chem, 2001, 276(17): 13917-13923.
27
Jiang Z, Song Q, Tang M, et al. Enhanced migration of neural stem cells by microglia grown on a three-dimensional graphene scaffold[J]. Acs Appl Mater Interfaces, 2016, 8(38): 25069-25077.
28
Arimitsu N, Shimizu J, Fujiwara N, et al. Role of SDF1/CXCR4 interaction in experimental hemiplegic models with neural cell transplantation[J]. Int J Mol Sci, 2012, 13(3): 2636-2649.
29
Sahab Negah S, Khaksar Z, Aligholi H, et al. Enhancement of neural stem cell survival, proliferation, migration, and differentiation in a novel self-assembly peptide nanofibber scaffold[J]. Mol Neurobiol, 2017, 54(10): 8050-8062.
30
Gao M, Dong Q, Yao H, et al. Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling[J]. Brain Behav Immun, 2017, 59:288-299.
31
Carbajal KS, Schaumburg C, Strieter R, et al. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis[J]. Proc Natl Acad Sci U S A, 2010, 107(24): 11068-11073.
32
Matsui TK, Mori E. Microglia support neural stem cell maintenance and growth[J]. Biochem Biophys Res Commun, 2018, 503(3): 1880-1884.
33
Liao H, Huang W, Niu R, et al. Cross-talk between the epidermal growth factor-like repeats/fibronectin 6-8 repeats domains of Tenascin-R and microglia modulates neural stem/progenitor cell proliferation and differentiation[J]. J Neurosci Res, 2008, 86(1): 27-34.
34
Yuan J, Ge H, Liu W, et al. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway[J]. Oncotarget, 2017, 8(12): 19855-19865.
35
Katura T, Moriya T, Nakahata N. 15-Deoxy-delta 12,14-prostaglandin J2 biphasically regulates the proliferation of mouse hippocampal neural progenitor cells by modulating the redox state[J]. Mol Pharmacol, 2010, 77(4): 601-611.
36
Mecha M, Yanguas-Casás N, FELIú A, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis[J]. J Neuroinflammation, 2020, 17(1):88.
37
Terashima T, Nakae Y, Katagi M, et al. Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro[J]. Heliyon, 2018, 4(10):e00837.
38
Leker RR, Toth ZE, Shahar T, et al. Transforming growth factor alpha induces angiogenesis and neurogenesis following stroke[J]. Neuroscience, 2009, 163(1):233-243.
39
Choi JY, Kim JY, Kim JY, et al. M2 Phenotype microglia-derived cytokine stimulates proliferation and neuronal differentiation of endogenous stem cells in ischemic brain[J]. Exp Neurobiol, 2017, 26(1):33-41.
40
Deierborg T, Roybon L, Inacio AR, et al. Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes[J]. Neuroscience, 2010, 171(4):1386-1396.
41
Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study[J]. Lancet, 2016, 388(10046):787-796.
42
Chen L, Zhang G, Gu Y, et al. Meta-analysis and systematic review of neural stem cells therapy for experimental ischemia stroke in preclinical studies[J]. Sci Rep, 2016, 6:32291.
43
Qian Y, Chen XX, Wang W, et al.Transplantation of Nurr1-overexpressing neural stem cells and microglia for treating parkinsonian rats[J]. CNS Neurosci Ther, 2020, 26(1):55-65.
44
Elena C, Ekaterina S, Marina K, et al. Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases [J]. J Neurorestoratology, 2018, 6: 41-47.
45
Ekaterina Shevela MD, Natalia Starostina, Alexandra Yankovskaya, et al. Intranasal delivery of M2 macrophage-derived soluble products reduces neuropsychological deficit in patients with cerebrovascular disease: a pilot study[J]. J Neurorestoratology, 2019, 7(2):89-100.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[3] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[4] 崔大勇, 王新, 张博. 小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 56-58.
[5] 徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.
[6] 王洋洋, 高谋, 徐如祥. 过敏毒素、小胶质以及神经干细胞在神经炎症和神经再生中的作用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 193-198.
[7] 喻勇, 杨华, 徐卡娅. 胎儿脊柱裂的致病因素与治疗的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 187-190.
[8] 蔡霖, 龚秋源, 王伟, 田恒力. 单细胞测序分析技术在小胶质细胞表型异质性研究中的最新进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 156-160.
[9] 左安俊, 欧振飞, 王天瑞, 丁磊, 李天予, 于腾波. 二甲胺四环素对小胶质细胞激活状态影响的研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 152-158.
[10] 高谋, 徐如祥, 董勤, 郭莉丽. CR2-Crry预处理诱导神经干细胞在颅脑损伤中发挥神经保护作用[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 215-220.
[11] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[12] 张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J]. 中华临床医师杂志(电子版), 2021, 15(04): 265-271.
[13] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[14] 白鲁岳, 赵思齐, 高升, 杨涛, 孟纯阳. 小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 33-36.
[15] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
阅读次数
全文


摘要