切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 155 -162. doi: 10.3877/cma.j.issn.2095-1221.2020.03.004

所属专题: 文献

论著

HOXA-AS2靶向miR-17对人脐静脉内皮细胞生物学功能以及炎症因子的影响
王磊1, 艾文2, 方叶青1, 陈之杰1, 邱小燕1, 李华英1, 谢培益1,()   
  1. 1. 518000 深圳,华中科技大学协和深圳医院心血管内科
    2. 518000 深圳,华中科技大学协和深圳医院科教科
  • 收稿日期:2019-11-28 出版日期:2020-06-01
  • 通信作者: 谢培益
  • 基金资助:
    深圳市科技创新委(201202174); 深圳市科技创新委(201202170)

Effect of HOXA-AS2 targeting miR-17 on cell biological function and inflammatory factors in EA.hy926

Lei Wang1, Wen Ai2, Yeqing Fang1, Zhijie Chen1, Xiaoyan Qiu1, Huaying Li1, Peiyi Xie1,()   

  1. 1. Internal Medicine-Cardiovascular Department, Shenzhen Union Hospital of Huazhong University of Science and Technology, Shenzhen 518000, China
    2. Science and Education Shenzhen Union Hospital of Huazhong University of Science and Technology, Shenzhen 518000, China
  • Received:2019-11-28 Published:2020-06-01
  • Corresponding author: Peiyi Xie
  • About author:
    Corresponding author: Xie Peiyi, Email:
引用本文:

王磊, 艾文, 方叶青, 陈之杰, 邱小燕, 李华英, 谢培益. HOXA-AS2靶向miR-17对人脐静脉内皮细胞生物学功能以及炎症因子的影响[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(03): 155-162.

Lei Wang, Wen Ai, Yeqing Fang, Zhijie Chen, Xiaoyan Qiu, Huaying Li, Peiyi Xie. Effect of HOXA-AS2 targeting miR-17 on cell biological function and inflammatory factors in EA.hy926[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(03): 155-162.

目的

探讨HOXA-AS2对动脉粥样硬化(AS)模型细胞生物学功能以及炎症因子的影响及分子机制。

方法

本实验共分为4个实验;实验1:用100 μg/mL的ox-LDL处理EA.hy926细胞作为ox-LDL组,正常培养的细胞作为对照组;实验2:将pcDNA3.1、pcDNA3.1-HOXA-AS2转染至EA.hy926细胞中再用100 μg/mL的ox-LDL处理,记为ox-LDL+pcDNA3.1组、ox-LDL+pcDNA3.1-HOXA-AS2组;实验3:将pcDNA3.1、pcDNA3.1-HOXA-AS2、si-NC、si-HOXA-AS2分别转染至EA.hy926细胞中,记为pcDNA3.1组、pcDNA3.1-HOXA-AS2组、si-NC组、si-HOXA-AS2组;实验4:将pcDNA3.1-HOXA-AS2与miR-NC、miR-17分别共转染至EA.hy926细胞中再用100 μg/mL的ox-LDL处理,记为ox-LDL+pcDNA3.1-HOXA-AS2+miR-NC组、ox-LDL+pcDNA3.1-HOXA-AS2+miR-17组。实时荧光定量PCR (RT-qPCR)检测HOXA-AS2和miR-17的表达水平;蛋白质印迹(Western blot)法检测细胞周期蛋白依赖性激酶抑制剂1A (P21)、cleaved caspase 3蛋白表达;MTT检测细胞增殖情况;流式细胞术检测细胞凋亡;ELISA法检测白细胞介素-1 (IL-1)、白细胞介素-6 (IL-6)水平;荧光素酶报告实验检测HOXA-AS2和miR-17的靶向关系。两组间比较采用独立样本t检验,多组间比较采用方差分析,组间两两比较采用LSD-t检验。

结果

与对照组比较,ox-LDL组EA.hy926细胞中HOXA-AS2表达水平(0.23±0.02比1.02±0.10),细胞增殖率[(47.83±5.01)﹪比(100.06±10.20)﹪]均降低,细胞凋亡率[(26.81±2.47)﹪比(8.23±0.80)﹪]、P21 (0.82±0.08比0.20±0.02)、cleaved caspase 3 (0.67±0.06比0.14±0.01)、IL-1[(792.34±59.37)ng/L比(326.14±34.59) ng/ L]和IL-6表达水平[(53.67±4.65)ng/L比(19.25±2.11)ng/L]均升高,差异具有统计学意义(P均< 0.05)。与ox-LDL+pcDNA3.1组比较,ox-LDL+pcDNA3.1-HOXA-AS2组EA.hy926细胞中HOXA-AS2表达水平(0.87±0.09比0.22±0.02)、细胞增殖率[(89.94±8.34)﹪比(48.21±4.86)﹪]均升高,细胞凋亡率[(12.33±1.18)﹪比(26.83±2.48)﹪]、P21 (0.33±0.03比0.81±0.08)、cleaved caspase 3 (0.24±0.02比0.69±0.06)、IL-1[ (446.25±46.84)ng/L比(802.21±60.18)ng/L]和IL-6表达水平[(25.64±2.65)ng/L比(55.21±5.10)ng/L]均降低,差异具有统计学意义(P均< 0.001)。与ox-LDL+pcDNA3.1-HOXA-AS2+miR-NC组比较,ox-LDL+pcDNA3.1-HOXA-AS2+miR-17组EA.hy926细胞中miR-17表达水平(2.14±0.21比1.05±0.10)、细胞凋亡率[(23.31±2.33)﹪比(13.75±1.44)﹪]、IL-1水平[(684.26±62.38)ng/L比(451.21±43.58)ng/L]、IL-6水平[(41.29±4.37)ng/L比(26.11±2.39)ng/L]均升高,细胞增殖率[(53.67±5.46)﹪比(90.21±9.16)﹪]降低,差异具有统计学意义(P均< 0.001)。HOXA-AS2与miR-17存在结合位点,荧光素酶报告实验显示,与miR-NC组比较,miR-17组中转染WT-HOXA-AS2的EA.hy926细胞荧光素酶活性降低(0.33±0.03比1.01±0.10,P < 0.05),而转染MUT-HOXA-AS2的EA.hy926细胞荧光素酶活性差异无统计学意义(P > 0.05);与anti-miR-NC组比较,anti-miR-17组中转染WT-HOXA-AS2的EA.hy926细胞荧光素酶活性升高(2.29±0.21比1.00±0.10,P < 0.05),而转染MUT-HOXA-AS2的EA.hy926细胞荧光素酶活性差异无统计学意义(P > 0.05)。

结论

过表达HOXA-AS2促进细胞增殖,抑制ox-LDL引起的细胞凋亡和炎症因子的释放,其机制可能与miR-17有关。

Objective

To investigate the effects of HOXA-AS2 on the cell biological functions and inflammatory factors of the atherosclerosis model and its molecular mechanism.

Methods

This experiment was divided into 4 experiments. Experiment 1: EA.hy926 cells, treated with 100 μg/mL ox-LDL, were set as the ox-LDL group, and normally cultured cells as the control group; Experiment 2: pcDNA3.1, pcDNA3.1-HOXA-AS2, transfected into EA.hy926 and then treated with 100 μg/mL ox-LDL, were recorded as ox-LDL+pcDNA3.1 group and ox-LDL+pcDNA3.1-HOXA-AS2 group; Experiment 3: pcDNA3.1, pcDNA3.1-HOXA-AS2, si-NC and si-HOXA-AS2, transfected into EA.hy926, were recorded as pcDNA3.1 group, pcDNA3.1-HOXA-AS2 group, si-NC group and si-HOXA-AS2 group; Experiment 4: pcDNA3.1-HOXA-AS2 was co-transfected with miR-NC and miR-17 into EA.hy926 respectively, and then treated with 100 μg/ mL ox-LDL, which were recorded as ox-LDL+pcDNA3.1-HOXA-AS2+miR-NC group and ox-LDL+pcDNA3.1-HOXA-AS2+miR-17 group. Real-time quantitative PCR (RT-qPCR) was used to detect the expressions of HOXA-AS2 and miR-17, Western blot to detect cyclin-dependent kinase inhibitor 1A (P21) and cleaved cysteine-containing aspartate-specific proteases-3 (cleaved caspase 3) protein expression, MTT assay to detect cell proliferation, flow cytometry to detect apoptosis, enzyme-linked immunosorbent assay (ELISA) to detect interleukin-1 (IL-1) and interleukin-6 (IL-6) levels, and luciferase reporter assay to detect the targeting relationship between HOXA-AS2 and miR-17. The experimental data were analyzed by SPSS 20.0. The comparisons between two groups were conducted by t test, while the comparison among multiple groups was made by one-way ANOVA.

Results

Compared with the control group, the expression level of HOXA-AS2 (0.23±0.02 vs 1.02±0.10) and the cell proliferation rate [ (47.83±5.01) ﹪ vs (100.06±10.20) ﹪] in the ox-LDL group were reduced. Apoptosis rate [ (26.81±2.47) ﹪ vs (8.23±0.80) ﹪], P21 (0.82±0.08 vs 0.20±0.02) , cleaved caspase 3 (0.67±0.06 vs 0.14±0.01) , IL-1 [ (792.34± 59.37) ng/L vs (326.14±34.59) ng/L] and IL-6 expression levels [ (53.67±4.65) ng/L vs (19.25±2.11) ng/L] were increased, and the difference was statistically significant (P < 0.05) . Compared with the ox-LDL + pcDNA3.1 group, the expression level of HOXA-AS2 (0.87±0.09 vs 0.22±0.02) and cell proliferation rate [ (89.94 ±8.34) ﹪ vs (48.21±4.86) ﹪] were all increased in ox-LDL+ pcDNA3.1-HOXA-AS2 group, and the apoptosis rate [ (12.33±1.18) ﹪ vs (26.83±2.48) ﹪], P21 (0.33±0.03 vs 0.81±0.08) , cleaved caspase 3 (0.24±0.02 vs 0.69±0.06) , IL-1 [ (446.25± 46.84) ng/L vs (802.21±60.18) ng/L], and IL-6 expression levels [ (25.64±2.65) ng/L vs (55.21±5.10) ng / L] were decreased, and the difference was statistically significant (P < 0.001) . Compared with the ox-LDL+pcDNA3.1-HOXA-AS2+ miR-NC group, the expression level of miR-17 in EA.hy926 of the ox-LDL+ pcDNA3.1-HOXA-AS2 + miR-17 group (2.14±0.21 vs 1.05±0.10) , apoptosis rate [ (23.31±2.33) ﹪ vs (13.75±1.44) ﹪], IL-1 level [ (684.26±62.38) ng/L vs (451.21±43.58) ng/L], IL-6 levels [ (41.29±4.37) ng/ L vs (26.11±2.39) ng/L] were increased, cell proliferation rate [ (53.67 ±5.46) ﹪ vs (90.21±9.16) ﹪] was decreased, and the difference was statistically significant (P < 0.001) . HOXA-AS2 had a binding site with miR-17. The luciferase report experiment showed that compared with the miR-NC group, the luciferase activity of EA.hy926 cells transfected with WT-HOXA-AS2 in the miR-17 group was reduced (0.33±0.03 vs 1.01±0.10, P < 0.05) , but no statistically significant difference (P > 0.05) was found in the luciferase activity of EA.hy926 cells transfected with MUT-HOXA-AS2; and compared with anti-miR-NC group, luciferase activity of EA.hy926 cells transfected with WT-HOXA-AS2 in anti-miR-17 group was increased (2.29±0.21 vs 1.00±0.10, P < 0.05) , and no statistically significant difference (P > 0.05) was observed in the luciferase activity of EA.hy926 cells transfected with MUT-HOXA-AS2.

Conclusion

Overexpression of HOXA-AS2 promotes cell proliferation, inhibits ox-LDL-induced apoptosis and release of inflammatory factors, and its mechanism may be related to miR-17.

表1 引物序列信息
图1 对照组与ox-LDL组细胞相关指标的差异
表2 HOXA-AS2的表达及ox-LDL处理对EA.hy926细胞增殖率、凋亡率及P21、cleaved caspase 3蛋白表达的影响(±sn = 3)
图2 过表达HOXA-AS2对ox-LDL作用的EA.hy926细胞增殖、凋亡的影响
表3 过表达HOXA-AS2对ox-LDL处理的EA.hy926细胞增殖率、凋亡率及P21、cleaved caspase 3、caspase3蛋白表达的影响(±sn = 3)
表4 过表达HOXA-AS2对ox-LDL作用的EA.hy926细胞中IL-1和IL-6表达的影响(±sn = 3)
图3 HOXA-AS2靶向miR-17
表5 双荧光素酶报告实验对HOXA-AS2和miR-17靶向关系的验证(±sn = 3)
图4 过表达miR-17在HOXA-AS2对ox-LDL作用的EA.hy926细胞增殖、凋亡中的影响
表6 过表达miR-17能逆转HOXA-AS2对ox-LDL作用的EA.hy926细胞中IL-1和IL-6表达及细胞增殖率的影响(±sn = 3)
表7 过表达miR-17能逆转HOXA-AS2对ox-LDL作用的EA.hy926细胞中P21、cleaved caspase 3、caspase 3及凋亡率的影响(±sn = 3)
1
王阳, 米树华, 杨关林. 动脉粥样硬化机制研究进展[J]. 中国医药, 2017, 12(4):619-623.
2
王深明, 吴伟滨. 重视动脉粥样硬化相关发病机制的研究[J]. 中华血管外科杂志, 2017, 2(4):197-200.
3
陈红芳, 程兴, 王建伟, 等. 长链非编码RNA与颈动脉粥样硬化关系的研究进展[J]. 浙江医学, 2019, 41(7):120-122.
4
Gao Y, Yu H, Liu Y, et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the miR-373/EGFR axis[J]. Cell PhysiolBiochem, 2018, 45(1):131-147.
5
Liu Y, Lin X, Zhou S, et al. Long non coding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p[J]. Biosci Rep, 2019, 39(5):R20190283.
6
Zhu X, Liu Y, Yu J, et al. LncRNA HOXA-AS2 represses endothelium inflammation by regulating the activity of NF-κB signaling[J]. Atherosclerosis, 2019, 281(1):38-46.
7
韩杨, 蒋知新. microRNA在动脉粥样硬化中的研究进展[J]. 临床和实验医学杂志, 2019, 18(4):109-112.
8
林庚海, 阮发晖, 陈劲松, 等. miR-17在动脉粥样硬化中下调ATG7蛋白水平抑制巨噬细胞的自噬功能[J]. 医学研究杂志, 2018, 47(1):68-71, 170.
9
范迎春, 卓著, 李潇, 等. miR-17与冠心病患者冠状动脉病变程度、侧支循环形成及血清Ox-LDL、25(OH)D3的关系[J]. 实用医学杂志, 2018, 34(23):96-100.
10
Tan L, Liu L, Jiang Z, et al. Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis[J]. J PharmacolSci, 2019, 139(4):280-288.
11
刘艳霞. α-硫辛酸对氧化低密度脂蛋白导致的人脐静脉内皮细胞损伤的保护作用的研究[D]. 大连:大连医科大学, 2010.
12
黄芝. 动脉粥样硬化诊断技术研究进展[J]. 影像研究与医学应用, 2018, 2(13):6-7.
13
王深明, 吴伟滨. 重视动脉粥样硬化相关发病机制的研究[J]. 中华血管外科杂志, 2017, 2(4):197-200.
14
林艾雯, 陈竹君. 动脉粥样硬化与内皮细胞损伤机制的研究进展[J]. 岭南心血管病杂志, 2015, 21(4):580-582.
15
张丽, 王江, 王秀艳, 等. 动脉粥样硬化大鼠血清IL-1β、IL-6以及冠状动脉巨噬细胞CD68的变化[J]. 中国老年学杂志, 2013, 33(21): 5391-5393.
16
张睿, 蔡君艳. lncRNA在动脉粥样硬化中的研究进展[J]. 医学综述, 2019, 25(2):7-12.
17
Jiang L, Wu Z, Meng X, et al. LncRNA HOXA-AS2 facilitates tumorigenesis and progression of papillary thyroid cancer by modulating the miR-15a-5p/HOXA3 axis[J]. Hum Gene Ther, 2019, 30(5):618-631.
18
Zhang Y, Xu J, Zhang S, et al. HOXA-AS2 promotes proliferation and induces epithelial-mesenchymal transition via the miR-520c-3p/GPC3 axis in hepatocellular carcinoma[J]. Cell PhysiolBiochem, 2018, 50(6):2124-2138.
19
Chen Z, Pan X, Sheng Z, et al. miR-17 regulates the proliferation and apoptosis of endothelial cells in coronary heart disease via targeting insulin-like-growth factor 1[J]. Pathol Res Pract, 2019, 215(9):152512.
20
谭力力, 刘丽敏. miR-17-5p在动脉粥样硬化小鼠中的作用机制研究[J]. 安徽医科大学学报, 2018, 53(6):889-893.
21
An JH, Chen ZY, Ma QL. LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17-5p/NF-κB signaling pathway in patients with atherosclerosis[J]. Eur Rev Med PharmacolSci, 2019, 23(19):8665-8677.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[7] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[8] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[9] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[10] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[11] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[12] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[13] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要