切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 267 -275. doi: 10.3877/cma.j.issn.2095-1221.2019.05.003

所属专题: 文献

论著

人体皮肤成纤维细胞的快速分离及多向分化能力鉴定
魏传飞1, 王伟1, 刘延明1, 段婧1, 芦现杰1, 王琰1, 张男1, 李孟鹏1, 陈超1, 章阳1, 佟加贝2, 韩发彬3,()   
  1. 1. 252000 聊城,聊城大学/聊城市人民医院组织工程与再生医学研究所
    2. 250000 济南,山东美加赛培生物科技有限公司
    3. 252000 聊城,聊城大学/聊城市人民医院组织工程与再生医学研究所;250000 济南,山东大学第二医院转化医学研究所
  • 收稿日期:2019-08-03 出版日期:2019-10-01
  • 通信作者: 韩发彬
  • 基金资助:
    国家自然科学基金面上项目(81571241); 山东省重点研发计划(公益类专项2017GSF18104)

Isolation and identification of multidirectional differentiation of human skin fibroblasts

Chuanfei Wei1, Wei Wang1, Yanming Liu1, Jing Duan1, Xianjie Lu1, Yan Wang1, Nan Zhang1, Mengpeng Li1, Chao Chen1, Yang Zhang1, Jiabei Tong2, Fabin Han3,()   

  1. 1. The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People's Hospital, Liaocheng 252000, China
    2. Shandong Meijia Saipei Biotechnology Co., Ltd. Jinan 250000, China
    3. The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People's Hospital, Liaocheng 252000, China; Institute of Translational Medicine, The Second Hospital of Shandong University, Jinan 250000, China
  • Received:2019-08-03 Published:2019-10-01
  • Corresponding author: Fabin Han
  • About author:
    Corresponding author: Han Fabin, Email:
引用本文:

魏传飞, 王伟, 刘延明, 段婧, 芦现杰, 王琰, 张男, 李孟鹏, 陈超, 章阳, 佟加贝, 韩发彬. 人体皮肤成纤维细胞的快速分离及多向分化能力鉴定[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(05): 267-275.

Chuanfei Wei, Wei Wang, Yanming Liu, Jing Duan, Xianjie Lu, Yan Wang, Nan Zhang, Mengpeng Li, Chao Chen, Yang Zhang, Jiabei Tong, Fabin Han. Isolation and identification of multidirectional differentiation of human skin fibroblasts[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(05): 267-275.

目的

建立快速分离人皮肤成纤维细胞的方法,并探讨成纤维细胞在成脂、成骨、成软骨和成神经的多向分化潜能。

方法

利用组织块培养法分离人体皮肤成纤维细胞,通过形态学观察、流式分析、Vimentin蛋白染色鉴定成纤维细胞;再利用生长曲线、核型分析、线粒体染色分析不同传代细胞的增殖速度,线粒体及染色体形态的改变;最后进行成纤维细胞成脂、成骨、成软骨和成神经的诱导分化实验,鉴定其多向分化潜能。两代细胞增殖速度及线料体相对量的比较采用t检验统计分析。

结果

分离的皮肤成纤维细胞呈典型梭状及多角形;高表达细胞表面标记物CD90 (NCF1,NCF2占比分别为99.9%,98.7%)和CD73 (NCF1,NCF2占比分别为98.2%,85.6%),但极少表达造血干细胞标记物CD34 (NCF1,NCF2占比分别为1.8%,2.6%);细胞Vimentin蛋白表达呈阳性,阳性率为100%;对细胞生长曲线进行分析,表明分离后不同代次细胞增殖差异无统计学意义(t?= 1.586,P?= 0.1567);线粒体相对含量统计分析,同一株细胞系第5代(相对荧光强度值:6876±577.8)与第10代(相对荧光强度值:7371±471.9)之间的差异无统计学意义(t?= 0.664,P?= 0.543);核型分析分别显示传代后保持染色体数目为正常46条且形态无明显异常;经诱导后成纤维细胞可向成脂、成骨、成软骨和类神经分化。

结论

利用组织块培养法分离出的人体皮肤成纤维细胞状态稳定,增殖能力强,具有成脂、成骨、成软骨和成神经多向分化诱导潜能,为细胞移植修复骨损伤、软骨损伤和神经损伤性疾病的临床研究提供细胞来源及实验依据。

Objective

To efficiently isolate human skin fibroblast cells with rapid proliferation and to investigate the multi-lineage differentiation potential of fibroblasts into adipogenic, osteogenic, chondrogenic and neurogenic directions.

Methods

The human primary fibroblast cells were isolated and cultured from the skin tissues. Morphological structures, flow cytometry and vimentin staining were used to identify the fibroblasts. Growth curves analysis, mitochondrial staining and karyotype analysis were used to identify the cell state of different generations. And finally fibroblasts were induced to adipogenic, osteogenic, chondrogenic and neurogenic directions. The difference between cell proliferation rate and the relative amount of mitochondrial was compared by t-test.

Results

The isolated fibroblasts showed a typical spindle-like morphology. Flow cytometry analysis showed that the isolated cells were highly express fibroblast surface markers CD90 (NCF1, NCF2 accounted for 99.9%, 98.7%, respectively) and CD73 (NCF1, NCF2 accounted for 98.2%, 85.6%, respectively) , rarely express hematopoietic stem cell marker CD34 (NCF1, NCF2 accounted for 1.8%, 2.6%, respectively) . All the fibroblasts positively express vimentin, the positive rate was 100%. The results of growth curves analyse showed that there was no significant difference in cell proliferation rate among multiple passages (t = 1.586, P = 0.1567) . The relative content of mitochondria showed no significant difference (t = 0.664, P = 0.543) between the fifth generation (relative fluorescence intensity: 6876±577.8) and the 10th generation (relative fluorescence intensity: 7371 ± 471.9) of the same cell line. Karyotype analysis showed that the number of chromosomes was 46 and the morphology of chromosomes were similar during passage. The multi-lineage differentiation assay showed that the fibroblasts could express adipogenic, osteogenic, cartilaginous and neurogenic differentiation markers.

Conclusion

Isolated fibroblasts have adipogenic, osteogenic, chondrogenic, neurogenic multi-directional differentiation potential, which can meet the needs of preclinical studies and provide cell sources for bone trauma, cartilage injury and neurodegenerative diseases.

图1 光学显微镜下分离皮肤成纤维细胞的形态(×100)
图2 分离皮肤成纤维细胞的流式分析
图3 荧光显微镜下分离皮肤成纤维细胞鉴定(Vimentin荧光染色,×100)
图4 分离皮肤成纤维细胞生长曲线分析
图5 荧光显微镜下皮肤成纤维细胞线粒分析(线粒体活体染色,×100)
图6 同一株人体皮肤成纤维细胞不同代次P5,P10代细胞线粒体相对荧光强度值
图7 分离皮肤成纤维细胞核型分析(×200)
图8 荧光显微镜下分离皮肤成纤维细胞多向诱导分化后免疫荧光染色鉴定(×200)
[1]
Dauer W, Przedborski S. Parkinson's disease: mechanisms and models [J]. Neuron, 2003, 39(6):889-909.
[2]
Ubhi K, Masliah E. Alzheimer's disease: recent advances and future perspectives[J]. J J Alzheimers Dis, 2013, 33 Suppl 1:S185-S194.
[3]
李祥全,宋科荣,王黎明, 等. 膝关节软骨缺损的治疗现状及研究进展[J]. 中国骨伤, 2015, 28(5):482-486.
[4]
Xie M, Tang SB, Li K, et al. Pharmacological reprogramming of somatic cells for regenerative medicine[J]. Acc Chem Res, 2017, 50(5):1202-1211.
[5]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
[6]
Kim JH, Auerbach JM, Rodríguez-Gómez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease [J]. Nature, 2002, 418(6893):50-56.
[7]
Sonntag KC, Pruszak J, Yoshizaki T, et al. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin[J]. Stem Cells, 2007, 25(2):411-418.
[8]
Komatsu M, Konagaya S, Egawa EY, et al. Maturation of human iPS cell-derived dopamine neuron precursors in alginate-Ca2+ hydrogel[J]. Biochim Biophys Acta, 2015, 1850(9):1669-1675.
[9]
Germanguz I, Sedan O, Zeevi-Levin N, et al. Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells[J]. J Cell Mol Med, 2011, 15(1):38-51.
[10]
Woods NB, Parker AS, Moraghebi RA, et al. Brief report: efficient Generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines[J]. Stem Cells, 2011, 29(7):1158-1164.
[11]
易寰,王萱,钟秀风, 等. 诱导多能干细胞向运动神经元分化的研究进展[J]. 中华细胞与干细胞杂志:电子版, 2016, 6(3):179-183.
[12]
Pfisterer U, Kirkeby A, Torper O, et al. Direct conversion of human fibroblasts to dopaminergic neurons[J]. Proc Natl Acad Sci U S A, 2011, 108(25):10343-10348.
[13]
Caiazzo M, Dell'Anno MT, Dvoretskova E, et al. Direct Generation of functional dopaminergic neurons from mouse and human fibroblasts[J]. Nature, 2011, 476(7359):224-227.
[14]
Tian C, Li Y, Huang Y, et al. Selective Generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion[J]. Sci Rep, 2015, 5:12622.
[15]
Wang YH, Yang H, Yang Q, et al. Chemical conversion of mouse fibroblasts into functional dopaminergic neurons[J]. Exp Cell Res, 2016, 347(2):283-292.
[16]
Kim J, Su SC, Wang H, et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts[J]. Cell Stem Cell, 2011, 9(5):413-419.
[17]
Efe JA, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy[J]. Nat Cell Biol, 2011, 13(3):U61-215.
[18]
王晓华,王扬,蒋涛, 等. 人皮肤成纤维细胞原代培养及生物学特性[J]. 中国医科大学学报, 2010, 39(12):1041-1044.
[19]
El Ghalbzouri A, Lamme E, Ponec M. Crucial role of fibroblasts in regulating epidermal morphogenesis[J]. Cell Tissue Res, 2002, 310(2):189-199.
[20]
Burbulla LF, Krüger R. The use of primary human fibroblasts for monitoring mitochondrial phenotypes in the field of parkinson's disease[J]. J Vis Exp, 2012 (68).pii: 4228.
[21]
Hu W, Qiu B, Guan W, et al. Direct conversion of normal and alzheimer's disease human fibroblasts into neuronal cells by small molecules[J]. Cell Stem Cell, 2015, 17(2):204-212.
[22]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
[23]
Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease [J]. Proc Natl Acad Sci U S A, 2008, 105(15):5856-5861.
[24]
Han FB, Wang W, Chen BX, et al. Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson's disease[J]. Cytotherapy, 2015, 17(5):665-679.
[25]
Maeda T, Lee MJ, Palczewska G, et al. Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo[J]. J Biol Chem, 2013, 288(48):34484-34493.
[26]
Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J]. Science, 2007, 318(5858):1920-1923.
[27]
Nelson TJ, Martinez-Fernandez A, Yamada S, et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells[J]. Circulation, 2009, 120(5):408-416.
[28]
Masuda S, Miyagawa S, Fukushima S, et al. Expandable progenitors from induced pluripotent stem cells[J]. Nat Rev Cardiol, 2016, 13(10):574.
[29]
孙传河,高鹏琳,廖伟龙, 等. 诱导多能干细胞应用研究进展[J]. 神经病学与神经康复学杂志, 2017, 13(2):74-79.
[30]
Bae S, Ahn JH, Park CW, et al. Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts[J]. Cell Tissue Res, 2009, 335(3):565-573.
[31]
Hematti P. Mesenchymal stromal cells and fibroblasts:a case of mistaken identity?[J]. Cytotherapy, 2012, 14(5):516-521.
[32]
Brohem CA, de Carvalho CM, Radoski CL, et al. Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue[J]. Int J Cosmet Sci, 2013, 35(5):448-457.
[33]
Haniffa MA, Wang XN, Holtick U, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells[J]. J Immunol, 2007, 179(3):1595-1604.
[34]
周建锋,郭明岳,王译萱, 等. 体细胞重编程机制研究进展[J]. 中国细胞生物学报, 2019, 41(5):805-821.
[35]
Xie X, Fu Y, Liu J. Chemical reprogramming and transdifferentiation[J]. Curr Opin in Genet Dev, 2017, 46:104-113.
[1] 宁艳洋, 李金铃, 徐琼. 转录因子Nanog过表达对人牙髓细胞增殖及多向分化能力的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(05): 357-363.
[2] 裴卓, 周聪, 张一鸣, 李玉红. 毛囊干细胞在皮肤创伤修复中的促进作用[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(06): 364-368.
[3] 侯春, 王肃生, 梁刚, 张志华, 冀航, 王平平, 施然, 李伯辉. 生姜提取物6-姜酚对人皮肤成纤维细胞增殖、迁移的影响及其机制研究[J]. 中华临床医师杂志(电子版), 2021, 15(09): 691-698.
阅读次数
全文


摘要