切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 199 -205. doi: 10.3877/cma.j.issn.2095-1221.2019.04.002

所属专题: 文献

论著

急性呼吸窘迫综合征小鼠肺内源性干细胞表达水平的研究
刘姿1, 张文平1,()   
  1. 1. 450003 郑州,河南省人民医院呼吸与危重症医学科 郑州大学人民医院 河南大学人民医院
  • 收稿日期:2019-04-08 出版日期:2019-08-01
  • 通信作者: 张文平
  • 基金资助:
    河南省基础与前沿技术研究项目(162300410109)

Expression of lung endogenous stem cells in mice with acute respiratory distress syndrome

Zi Liu1, Wenping Zhang1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
  • Received:2019-04-08 Published:2019-08-01
  • Corresponding author: Wenping Zhang
  • About author:
    Corresponding author:Zhang Wenping, Email:
引用本文:

刘姿, 张文平. 急性呼吸窘迫综合征小鼠肺内源性干细胞表达水平的研究[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 199-205.

Zi Liu, Wenping Zhang. Expression of lung endogenous stem cells in mice with acute respiratory distress syndrome[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(04): 199-205.

目的

探讨急性呼吸窘迫综合征(ARDS)小鼠肺组织中肺内源性干细胞的表达水平。

方法

10只C57BL/6小鼠分成两组:实验组和对照组,实验组通过气管内注射脂多糖(LPS)构建小鼠ARDS模型,采用气管内注射PBS作为对照组;采用胶原酶、热消化法消化小鼠肺组织获取小鼠肺单细胞悬液;双重免疫荧光染色方法鉴定小鼠肺组织中sca-1+CD31-CD45-细胞;流式细胞术对肺sca-1+CD31-CD45-细胞进行分选。采用方差分析及独立t检验进行统计学分析。

结果

通过气管内注入LPS成功制作小鼠急性ARDS模型;5只小鼠的全肺组织制备单细胞悬液总数目达5×107个/ml,活细胞百分比为98﹪;肺内源性干细胞包括Ⅱ型肺泡上皮细胞、clara细胞以及支气管肺泡干细胞等,通过肺组织双重免疫荧光染色,验证小鼠肺组织Ⅱ型肺泡上皮细胞、clara细胞以及支气管肺泡干细胞;对照组及实验组各样本肺内源性干细胞数目占单细胞悬液细胞数比例呈正态分布,且实验组肺内源性干细胞数目水平(10.73±10.65)﹪较对照组水平(12.23±0.73)﹪降低(t = -3.405,P < 0.01)。

结论

ARDS时,小鼠肺内源性干细胞(sca-1+CD31-CD45-)水平降低,减少的肺内源性干细胞具体去向尚不明确,其有可能参与机体急性炎症过程中气道上皮细胞的修复、再生过程。

Objective

To study the expression level of lung sca-1+ CD31- CD45- cells in lung tissue of mice with acute respiratory distress syndrome (ARDS) .

Methods

10 C57BL/6 mice were divided into experimental group and the control group. The experimental group was established by intratracheal injection of lipopolysaccharide (LPS) to construct the mouse ARDS model, and intratracheal injection of PBS was used as the control group. Lung tissue of ARDS mouse model was treated with collagenase and heat digestion to obtain lung single cell suspension. Dual immunofluorescence staining was adopted to identify lung endogenous stem cells. Lung sca-1+ CD31-CD45- cells were sort by flow cytometry.

Results

The ARDS model was successfully prepared by intratracheal injection of lipopolysaccharide; the total number of single cell suspensions prepared by whole lung tissue of 5 mice was 5×107/ml, and the percentage of viable cells was 98﹪; Lung Endogenous stem cells include type Ⅱ alveolar epithelial cells, clara cells, and bronchoalveolar stem cells. The lung tissue type Ⅱ alveolar epithelial cells, clara cells, and bronchoalveolar stem cells were verified by double immunofluorescence staining of lung tissues. The number of lung endogenous stem cells in the control group and the experimental group accounted for a normal distribution of the number of single cell suspension cells, and the number of lung endogenous stem cells in the experimental group (10.73±10.65) ﹪ was significantly lower than that in the control group (12.23±0.73) ﹪ (t?= -3.405, P < 0.01) .

Conclusion

The proportion of lung sca-1+ CD31-CD45- cells in lung tissue of ARDS mice is significantly lower than that of the control group. It is not clear that the specific fate of these lung endogenous stem cells is reduced. It may participate in the repair and regeneration process of airway epithelial cells during acute inflammation in the body.

图1 奥林巴斯光学显微镜下观察小鼠肺组织(HE染色)
图2 奥林巴斯荧光显微镜下观察肺组织(双重免疫荧光染色,×200)
图3 对照组肺内源性干细胞(sca-1+ CD31- CD45- cells)流式细胞图
图4 实验组样本肺内源性干细胞(sca-1+ CD31- CD45- cells)流式细胞图
1
Xu XF, Dai HP, Li YM, et al. Mass spectrometry-based proteomics in acute respiratory distress syndrome: a powerful modality for pulmonary precision medicine[J]. Chin Med J (Engl), 2016, 129(19):2357-2364.
2
Umbrello M, Formenti P, Bolgiaghi L, et al. Current concepts of ARDS: A narrative review[J]. Int J Mol Sci, 2016, 18(1). pii: E64.
3
Akram KM, Patel N, Spiteri MA, et al. Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches[J]. Int J Mol Sci, 2016, 17(1):128
4
Li F, He J, Wei J, et al. Diversity of epithelial stem cell types in adult lung[J]. Stem Cells Int, 2015:728307.
5
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome[J]. Clin Chest Med, 2014, 35(4):797-809.
6
Mcqualter JL. Endogenous lung stem cells for lung regeneration[J]. Expert Opin Biol Ther, 2019, 19(6):539-546.
7
Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6):823-835.
8
Ando K, Fujino N, Mitani K, et al. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(10):L899-L908.
9
Hittinger M, Czyz ZT, Huesemann Y, et al. Molecular profiling of single Sca-1+/CD34+,- cells--the putative murine lung stem cells[J]. PLoS One, 2013, 8(12):e83917.
10
Donaldson JG. Immunofluorescence Staining[J]. Curr Protoc Cell Biol, 2015, 69:4.3.1-4.3.7.
11
Sun R, Zhou Q, Ye X, et al. A change in the number of CCSP(pos)/SPC(pos) cells in mouse lung during development, growth, and repair [J]. Respir Investig, 2013, 51(4):229-240.
12
Maron-Gutierrez T, Laffey JG, Pelosi P, et al. Cell-based therapies for the acute respiratory distress syndrome[J]. Curr Opin Crit Care, 2014, 20(1):122-131.
13
Chen F, Fine A. Stem cells in lung injury and repair[J]. Am J Pathol, 2016, 186(10):2544-2550.
14
Qian S, Ding JY, Xie R, et al. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung[J]. Biochem Biophys Res Commun, 2008, 377(2):668-673.
15
Deng M, Li J, Gan Y, et al. Changes in the number of CD31-CD45-Sca-1+ cells and Shh signaling pathway involvement in the lungs of mice with emphysema and relevant effects of acute adenovirus infection[J]. Int J Chron Obstruct Pulmon Dis, 12(2017):861-872.
16
李海胜. 急性肺损伤后内源性肺干/祖细胞的动态变化及其修复作用[D]. 重庆: 第三军医大学, 2013.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[4] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[5] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[6] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[7] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[8] 张妍, 吕强, 韩笑, 王旭, 刘冉, 张利, 陈香美. 挤压综合征大鼠核心脏器肾心肺损伤特点研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 248-253.
[9] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[10] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[11] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[12] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[13] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
[14] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[15] 陈雪芬, 邓静敏. 国内外179例原发性肺淋巴上皮瘤样癌的文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(05): 551-556.
阅读次数
全文


摘要