切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 199 -205. doi: 10.3877/cma.j.issn.2095-1221.2019.04.002

所属专题: 文献

论著

急性呼吸窘迫综合征小鼠肺内源性干细胞表达水平的研究
刘姿1, 张文平1,()   
  1. 1. 450003 郑州,河南省人民医院呼吸与危重症医学科 郑州大学人民医院 河南大学人民医院
  • 收稿日期:2019-04-08 出版日期:2019-08-01
  • 通信作者: 张文平
  • 基金资助:
    河南省基础与前沿技术研究项目(162300410109)

Expression of lung endogenous stem cells in mice with acute respiratory distress syndrome

Zi Liu1, Wenping Zhang1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
  • Received:2019-04-08 Published:2019-08-01
  • Corresponding author: Wenping Zhang
  • About author:
    Corresponding author:Zhang Wenping, Email:
引用本文:

刘姿, 张文平. 急性呼吸窘迫综合征小鼠肺内源性干细胞表达水平的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 199-205.

Zi Liu, Wenping Zhang. Expression of lung endogenous stem cells in mice with acute respiratory distress syndrome[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(04): 199-205.

目的

探讨急性呼吸窘迫综合征(ARDS)小鼠肺组织中肺内源性干细胞的表达水平。

方法

10只C57BL/6小鼠分成两组:实验组和对照组,实验组通过气管内注射脂多糖(LPS)构建小鼠ARDS模型,采用气管内注射PBS作为对照组;采用胶原酶、热消化法消化小鼠肺组织获取小鼠肺单细胞悬液;双重免疫荧光染色方法鉴定小鼠肺组织中sca-1+CD31-CD45-细胞;流式细胞术对肺sca-1+CD31-CD45-细胞进行分选。采用方差分析及独立t检验进行统计学分析。

结果

通过气管内注入LPS成功制作小鼠急性ARDS模型;5只小鼠的全肺组织制备单细胞悬液总数目达5×107个/ml,活细胞百分比为98﹪;肺内源性干细胞包括Ⅱ型肺泡上皮细胞、clara细胞以及支气管肺泡干细胞等,通过肺组织双重免疫荧光染色,验证小鼠肺组织Ⅱ型肺泡上皮细胞、clara细胞以及支气管肺泡干细胞;对照组及实验组各样本肺内源性干细胞数目占单细胞悬液细胞数比例呈正态分布,且实验组肺内源性干细胞数目水平(10.73±10.65)﹪较对照组水平(12.23±0.73)﹪降低(t = -3.405,P < 0.01)。

结论

ARDS时,小鼠肺内源性干细胞(sca-1+CD31-CD45-)水平降低,减少的肺内源性干细胞具体去向尚不明确,其有可能参与机体急性炎症过程中气道上皮细胞的修复、再生过程。

Objective

To study the expression level of lung sca-1+ CD31- CD45- cells in lung tissue of mice with acute respiratory distress syndrome (ARDS) .

Methods

10 C57BL/6 mice were divided into experimental group and the control group. The experimental group was established by intratracheal injection of lipopolysaccharide (LPS) to construct the mouse ARDS model, and intratracheal injection of PBS was used as the control group. Lung tissue of ARDS mouse model was treated with collagenase and heat digestion to obtain lung single cell suspension. Dual immunofluorescence staining was adopted to identify lung endogenous stem cells. Lung sca-1+ CD31-CD45- cells were sort by flow cytometry.

Results

The ARDS model was successfully prepared by intratracheal injection of lipopolysaccharide; the total number of single cell suspensions prepared by whole lung tissue of 5 mice was 5×107/ml, and the percentage of viable cells was 98﹪; Lung Endogenous stem cells include type Ⅱ alveolar epithelial cells, clara cells, and bronchoalveolar stem cells. The lung tissue type Ⅱ alveolar epithelial cells, clara cells, and bronchoalveolar stem cells were verified by double immunofluorescence staining of lung tissues. The number of lung endogenous stem cells in the control group and the experimental group accounted for a normal distribution of the number of single cell suspension cells, and the number of lung endogenous stem cells in the experimental group (10.73±10.65) ﹪ was significantly lower than that in the control group (12.23±0.73) ﹪ (t?= -3.405, P < 0.01) .

Conclusion

The proportion of lung sca-1+ CD31-CD45- cells in lung tissue of ARDS mice is significantly lower than that of the control group. It is not clear that the specific fate of these lung endogenous stem cells is reduced. It may participate in the repair and regeneration process of airway epithelial cells during acute inflammation in the body.

图1 奥林巴斯光学显微镜下观察小鼠肺组织(HE染色)
图2 奥林巴斯荧光显微镜下观察肺组织(双重免疫荧光染色,×200)
图3 对照组肺内源性干细胞(sca-1+ CD31- CD45- cells)流式细胞图
图4 实验组样本肺内源性干细胞(sca-1+ CD31- CD45- cells)流式细胞图
1
Xu XF, Dai HP, Li YM, et al. Mass spectrometry-based proteomics in acute respiratory distress syndrome: a powerful modality for pulmonary precision medicine[J]. Chin Med J (Engl), 2016, 129(19):2357-2364.
2
Umbrello M, Formenti P, Bolgiaghi L, et al. Current concepts of ARDS: A narrative review[J]. Int J Mol Sci, 2016, 18(1). pii: E64.
3
Akram KM, Patel N, Spiteri MA, et al. Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches[J]. Int J Mol Sci, 2016, 17(1):128
4
Li F, He J, Wei J, et al. Diversity of epithelial stem cell types in adult lung[J]. Stem Cells Int, 2015:728307.
5
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome[J]. Clin Chest Med, 2014, 35(4):797-809.
6
Mcqualter JL. Endogenous lung stem cells for lung regeneration[J]. Expert Opin Biol Ther, 2019, 19(6):539-546.
7
Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6):823-835.
8
Ando K, Fujino N, Mitani K, et al. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(10):L899-L908.
9
Hittinger M, Czyz ZT, Huesemann Y, et al. Molecular profiling of single Sca-1+/CD34+,- cells--the putative murine lung stem cells[J]. PLoS One, 2013, 8(12):e83917.
10
Donaldson JG. Immunofluorescence Staining[J]. Curr Protoc Cell Biol, 2015, 69:4.3.1-4.3.7.
11
Sun R, Zhou Q, Ye X, et al. A change in the number of CCSP(pos)/SPC(pos) cells in mouse lung during development, growth, and repair [J]. Respir Investig, 2013, 51(4):229-240.
12
Maron-Gutierrez T, Laffey JG, Pelosi P, et al. Cell-based therapies for the acute respiratory distress syndrome[J]. Curr Opin Crit Care, 2014, 20(1):122-131.
13
Chen F, Fine A. Stem cells in lung injury and repair[J]. Am J Pathol, 2016, 186(10):2544-2550.
14
Qian S, Ding JY, Xie R, et al. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung[J]. Biochem Biophys Res Commun, 2008, 377(2):668-673.
15
Deng M, Li J, Gan Y, et al. Changes in the number of CD31-CD45-Sca-1+ cells and Shh signaling pathway involvement in the lungs of mice with emphysema and relevant effects of acute adenovirus infection[J]. Int J Chron Obstruct Pulmon Dis, 12(2017):861-872.
16
李海胜. 急性肺损伤后内源性肺干/祖细胞的动态变化及其修复作用[D]. 重庆: 第三军医大学, 2013.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[3] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[4] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[5] 胥韦, 刘敏, 钟樟华, 裴艳丽, 荣磊. EBUS-TBNA 联合X 线透视下经支气管肺活检术在肺门及纵隔病变中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 680-684.
[6] 王丹, 李文思, 成苏杭, 吉泽, 朱祥, 郝春艳. Treg/Th17 及DC 细胞水平在COPD不同疾病进展期的表达及其与预后的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 685-689.
[7] 沈琪乐, 赵勤华, 宫素岗, 刘锦铭, 王岚, 邱宏玲. COPD 稳定期患者血清CC16 蛋白表达与肺功能、肺气肿表型的关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 690-695.
[8] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[9] 袁延丽, 屈卓军, 崔会慧, 王菁, 高贝贝, 潘院. 原发性肺癌切除术后谵妄的危险因素及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 701-706.
[10] 刘一鸣, 温佳新, 赵恺, 薛志强. ⅢA 期肺腺癌新辅助治疗后胸腔镜右肺中下叶切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 311-313.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[15] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
阅读次数
全文


摘要