切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 187 -191. doi: 10.3877/cma.j.issn.2095-1221.2018.03.012

所属专题: 文献

综述

骨髓间充质干细胞成肌分化在骨骼肌再生中的应用
李鹏1, 郭修田1,()   
  1. 1. 200071 上海中医药大学附属市中医医院肛肠科
  • 收稿日期:2018-12-11 出版日期:2018-06-01
  • 通信作者: 郭修田

Application of bone marrow mesenchymal stem cells with myogenic differentiation in skeletal muscle regeneration

Peng Li1, Xiutian Guo1,()   

  1. 1. Department of Anorectal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
  • Received:2018-12-11 Published:2018-06-01
  • Corresponding author: Xiutian Guo
  • About author:
    Corresponding author: Guo Xiutian, Email:
引用本文:

李鹏, 郭修田. 骨髓间充质干细胞成肌分化在骨骼肌再生中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 187-191.

Peng Li, Xiutian Guo. Application of bone marrow mesenchymal stem cells with myogenic differentiation in skeletal muscle regeneration[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 187-191.

骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。

Muscle satellite cells contribute mainly to the strong regenerative capacity of skeletal muscle. However, the number of satellite cells only accounts for 1%~ 5% of the number of skeletal muscle cells. When muscles are injured, the satellite cells are inadequate to promote skeletal muscle repair and regeneration. Additionally, its regenerative ability would diminish with aging, and it cannot repair severely injured skeletal muscles. Bone marrow mesenchymal stem cells (BMSC) are widely used in the repair and regeneration of injured skeletal muscle due to their multi-directional differentiation potential, paracrine potential, immunomodulatory capacity and easy accessibility. However, the use of BMSC alone to treat injured skeletal muscle cannot achieve satisfactory outcomes. Therefore, to maximize the myogenic differentiation potential of BMSC and to facilitate skeletal muscle repair and regeneration, numerous studies used drugs, biological materials, cells and cytokines to pretreat bone marrow mesenchymal stem cells before transplant. The results showed not only improvement of the implantation rate of BMSC, but promotion of the differentiation of BMSC into skeletal muscle. This review aims to summarize the application of BMSC with myogenic differentiation in skeletal muscle regeneration.

1
Grogan BF, Hsu JR. Volumetric muscle loss[J]. J Am Acad Orthop Surg, 2011 (1):S35-37.
2
Ten Broek RW, Grefte S, Von den Hoff JW.Regulatory factors and cell populations involved in skeletal muscle regeneration[J]. J Cell Physiol, 2010, 224(1):7-16.
3
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment - relevance for therapy[J]. FEBS J, 2013, 280(17, SI):4281-4293.
4
Cossu G, Mavilio F. Myogenic stem cells for the therapy of primary myopathies:wishful thinking or therapeutic perspective?[J]. J Clin Invest, 2000, 105(12):1669-1674.
5
Zammit PS. All muscle satellite cells are equal,but are some more equal than others?[J]. J Cell Sci, 2008, 121(18):2975-2982.
6
Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications[J]. J Immunol Res, 2015:394917.
7
Bian S, Zhang L, Duan L, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J]. J Mol Med (Berl), 2014, 92(4):387-397.
8
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
9
Kokabu S, Lowery JW, Jimi E. Cell fate and differentiation of bone marrow mesenchymal stem cells[J]. Stem Cells Int, 2016:3753581.
10
Guo XF, Bai Y, Zhang L, et al. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications[J]. Stem Cell Res Ther, 2018, 9(1):44.
11
Muruganandan S, Roman AA, Sinal CJ. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program[J]. Cell Mol Life Sci, 2009, 66(2):236-253.
12
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
13
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1):63.
14
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Molecular Therapy, 2015, 23(5):812-823.
15
Bruno S, Tapparo M, Collino F, et al. Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells[J]. Tissue Eng Part A, 2017, 23(21/22):1262-1273.
16
Nakamura Y, Miyaki S, Ishitobi HA, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration[J]. FEBS Lett, 2015, 589(11):1257-1265.
17
Krampera M, Cosmi L, Angeli R, et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells[J]. Stem Cells, 2006, 24(2):386-398.
18
Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications[J]. Arch Pharm Res, 2012, 35(2):213-221.
19
Ferrari G, Cusella G, Angelis D, et al. Muscle regeneration by bone Marrow-Derived myogenic progenitors[J]. Science, 1998, 279(5356): 1528-1530.
20
Helal MA, Shaheen NE, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats[J]. Immunopharmacol Immunotoxicol, 2016:1-9. [Epub ahead of print]
21
Gala K, Burdzinska A, Idziak M, et al. Transplantation of mesenchymal stem cells into the skeletal muscle induces cytokine Generation[J]. Cytokine, 2013, 64(1):243-250.
22
As GR, Van DI, Boersma H, et al. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice[J]. Cell Transplant, 2011, 20(2):217-231.
23
Winkler T, Von RP, Matziolis G, et al. Dose-response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats[J]. Tissue Eng Part A, 2009, 15(3):487-492.
24
Winkler T, Von Roth P, Radojewski PA, et al. Immediate and delayed transplantation of mesenchymal stem cells improve muscle force after skeletal muscle injury in rats[J]. J Tissue Eng Regen Med, 2012, 6(3):s60-s67.
25
Von Roth P, Duda GN, Radojewski PA, et al. Mesenchymal stem cell therapy following muscle trauma leads to improved muscular regeneration in both male and female rats[J]. Gend Med, 2012, 9(2):129-136.
26
Von Roth P, Winkler T, Rechenbach KA, et al. Improvement of contraction force in injured skeletal muscle after autologous mesenchymal stroma cell transplantation is accompanied by slow to fast fiber type shift[J]. Transfus Med Hemother, 2013, 40(6):425-430.
27
Osses N, Brandan E. ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression[J]. Am J Physiol Cell Physiol, 2002, 282(2):C383-C394.
28
Merritt EK, Cannon MV, Hammers DW, et al. Repair of traumatic skeletal muscle injury with Bone-Marrow-Derived mesenchymal stem cells seeded on extracellular matrix[J]. Tissue Eng Part A, 2010, 16(9):2871-2881.
29
Kheradmandi M, Vasheghani-Farahani E, Ghiaseddin A, et al. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold[J]. J Biomed Mater Res A, 2016, 104(7):1720-1727.
30
Zhao CY, Andersen H, Ozyilmaz BA, et al. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled Carbon nanotube films for skeletal muscle engineering[J]. Nanoscale, 2015, 7(43):18239-18249.
31
Xu YY, Li ZQ, Li XF, et al. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels[J]. Acta Biomater, 2015, 26:23-33.
32
Du X W, Wu H L, Zhu Y F, et al. Experimental study of therapy of bone marrow mesenchymal stem cells or muscle-like cells/calcium alginate composite gel for the treatment of stress urinary incontinence[J]. Neurourol Urodyn, 2013, 32(3): 281-286.
33
Egusa H, Kobayashi M, Matsumoto T, et al. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone Marrow-Derived mesenchymal stromal cells with cell alignment[J]. Tissue Eng Part A, 2013, 19(5/6):770-782.
34
Haghighipour N, Heidarian S, Shokrgozar MA, et al. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell[J]. Cell Biol Int, 2012, 36(7):669-675.
35
Ross CL, Siriwardane M, Almeida-Porada G, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation[J]. Stem Cell Res, 2015, 15(1):96-108.
36
Oshima S, Kamei N, Nakasa T, et al. Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model[J]. J Orthop Sci, 2014, 19(3):478-488.
37
Nakabayashi A, Kamei N, Sunagawa T, et al. In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model[J]. J Orthop Res, 2013, 31(5):754-759.
38
Supokawej A, Kheolamai P, Nartprayut K, et al. Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment[J]. Turk J Haematol, 2013, 30(2):115-121.
39
Fasolino I, Guarino V, Cirillo VA. 5-Azacytidine-mediated hMSC behavior on electrospun scaffolds for skeletal muscle regeneration[J]. J Biomed Mater Res A, 2017, 105(9):2551-2561.
40
Conforti E, Arrigoni E, Piccoli M, et al. Reversine increases multipotent human mesenchymal cells differentiation potential[J]. J Biol Regul Homeost Agents, 2011, 25(2 Suppl):S25-33.
41
Xinaris C, Morigi M, Benedetti V, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion[J]. Cell Transplant, 2013, 22(3):423-436.
42
Xu X, Zhu F, Zhang M, et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization[J]. Cells Tissues Organs, 2013, 197(2):103-113.
43
Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/ CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823.
44
Kowalski K, Kołodziejczyk A, Sikorska M, et al. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf- 1/Cxcr7 axis[J]. Cell Adh Migr, 2017, 11(4):384-398.
45
Xie J, Wang W, Si JW, et al. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells[J]. Cell Immunol, 2013, 281(1):68-75.
46
Brzoska E, Kowalewska M, Markowska-Zagrajek A, et al. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells[J]. Biology of the Cell, 2012, 104(12):722-737.
47
Isao T, Hemler ME. Role of transmembrane 4 superfamily(Tm4sf)proteins Cd9 and Cd81 in muscle cell fusion and myotube maintenance[J]. J Cell Biol, 1999, 146(4):893-904.
48
Charrin S, Latil M, Soave SA, et al. Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81[J]. Nat Commun, 2013, 4(2):1674.
49
Brzoska E, Kowalski K, Markowska-Zagrajek AA, et al. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration[J]. Stem Cell Res Ther, 2015, 6(1):46.
50
Gang EJ, Bosnakovski D, Simsek T, et al. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage[J]. Exp Cell Res, 2008, 314(8):1721-1733.
51
Beier JP, Bitto FF, Lange C, et al. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts[J]. Cell Biol Int, 2013, 35(4):397-406.
52
Witt R, Weigand A, Boos AM, et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering[J]. BMC Cell Biol, 2017, 18(1):15.
[1] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[2] 徐志清, 杜宇. 机械敏感离子通道在牙源性细胞中作用的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 54-60.
[3] 李昊, 韦秀湘, 钟晓霞. 聚焦高黏附力骨黏合剂,促进口腔硬组织修复[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 1-4.
[4] 高思勇, 郭彦君, 陈晖璐, 邓飞龙, 宫苹, 王天璐. 骨结合过程中种植体周血管时空分布的观测研究[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 22-29.
[5] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[6] 仲卫冬, 仲洁, 代京, 程文悦, 张剑. 基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 139-145.
[7] 程茂波, 刘钰莎, 张旭, 刘文博, 赵鹏. 对再生型疝修补补片动物试验设计的考量[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 121-124.
[8] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[9] 赵敏廷, 张郭, 孙家明. 调节性T细胞与组织修复再生[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 51-55.
[10] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[11] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[12] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[13] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[14] 何青, 王钰莹, 范振海, 林风琴, 陈辉, 刘燕飞, 刘娟, 何志旭, 余丽梅. 省级重点实验室细胞工程技术平台产学研用开放共享的实践探索[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(01): 1-6.
[15] 钱锦华, 曹超, 徐敏, 左迪迪, 曹洁, 张婷, 翁玉蓉, 胡耀敏. 骨骼肌减少症与老年患者心脏结构及功能的相关性研究[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 14-18.
阅读次数
全文


摘要