切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 120 -124. doi: 10.3877/cma.j.issn.2095-1221.2018.02.009

所属专题: 文献

综述

间充质干细胞治疗急性放射性损伤的研究
薛飞1, 黄平平1,()   
  1. 1. 300020 天津,中国医学科学院北京协和医学院血液学研究所
  • 收稿日期:2018-01-24 出版日期:2018-04-01
  • 通信作者: 黄平平
  • 基金资助:
    中国医学科学院医学与健康科技创新工程经费资助(2017-I2M-1-016)

Mesenchymal stem cells in the treatment of acute radiation-induced injury

Fei Xue1, Pingping Huang1,()   

  1. 1. Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
  • Received:2018-01-24 Published:2018-04-01
  • Corresponding author: Pingping Huang
  • About author:
    Corresponding author:Huang pingping, Email:
引用本文:

薛飞, 黄平平. 间充质干细胞治疗急性放射性损伤的研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 120-124.

Fei Xue, Pingping Huang. Mesenchymal stem cells in the treatment of acute radiation-induced injury[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(02): 120-124.

急性放射性损伤是组织损伤的一种重要类型,目前未有较理想的治疗方案。间充质干细胞(MSCs)能够多向分化、自我更新,且具有分泌多种细胞因子、抗炎、免疫调节等生物活性。其在促进组织修复的优势显而易见,而移植的时机、剂量长期以来莫衷一是。致瘤性等安全问题制约其临床研究的进一步开展。近年来,MSCs趋向于无细胞化移植取得了明显成效。这一研究新进展势必迎来急性放射性损伤治疗的新格局,本文对此研究现状及进展进行综述。

Acute radiation injury is one of serious complication of exposure to irradiation, but there is still no effective means to prevent and treat it. However, mesenchymal stem cells (MSCs) are self-renewal and differentiating into various cell lineages. These cells possess attributes such as secreting a variety of cytokines, anti-inflammatory and immunosuppressive properties. The advantages of MSCs in tissue-repaired is conspicuous, but the timing and doses of transplants have been controversial. The safety problems such as tumorigenicity restrict clinical trials. Recently, the result of cell-free transplantation is fruitful, and the new situation definitely comes soon. This review summarizes and discusses recent advances on MSCs treating severe acute radiation.

表1 MSCs治疗放射性损伤的临床应用
1
Dicarlo AL, Tamarat R, Rios CI, et al. Cellular therapies for treatment of radiation injury: report from a NIH/NIAID and IRSN workshop[J]. Radiat Res, 2017, 188(2):e54-e75.
2
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
3
Blázquez-Prunera A, Díez JM, Gajardo R, et al. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction[J]. Stem Cell Res Ther, 2017, 8(1):103-114.
4
Lowe SW, Schmitt EM, Smith SW, et al. p53 is required for radiation-induced apoptosis in mouse thymocytes[J]. Nature, 1993, 362(6423):847-849.
5
Vilborg A, Wilhelm MT, Wiman KG. Regulation of tumor suppressor p53 at the RNA level[J]. J Mol Med (Berl), 2010, 88(7):645-652.
6
Vousden KH. p53 and PUMA: A deadly duo[J]. Science, 2005, 309(5741):1685-1686.
7
Buckbinder L, Talbott R, Velascomiguel S, et al. Induction of the growth inhibitor IGF-bingding protein-3 by p53[J]. Nature, 1995, 377(6550):646-649.
8
Burns TF, El-Deiry WS. The p53 pathway and apoptosis[J]. J Cell Physiol, 1999, 181(2):231-239.
9
Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis[J]. Oncogene, 2003, 22(37):5897-5906.
10
Herr I, Wilhelm D, Böhler T, et al. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis[J]. EMBO J, 1997, 16(20):6200-6208.
11
Liang L, Fan Y, Cheng J, et al. TAK1 ubiquitination regulates doxorubicin-induced NF-κB activation[J]. Cell Signal, 2013, 25(1):247-254.
12
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival[J]. J Cell Physiol, 2002, 192(1):1-15.
13
Blirando K, Hneino M, Martelly I, et al. Mast cells and ionizing radiation induce a synergistic expression of inflammatory genes in endothelial cells by a mechanism involving p38α MAP kinase and (p65) NF-κB activation[J]. Radiat Res, 2012, 178(6):556-567.
14
Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method[J]. Exp Hematol, 1974, 2(2):83-92.
15
Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment[J]. Nature, 2009, 460(7252):259-U124.
16
Barrachina L, Remacha AR, Romero A, et al. Priming equine bone Marrow-Derived mesenchymal stem cells with proinflammatory cytokines: implications in Immunomodulation-Immunogenicity balance, cell viability, and differentiation potential[J]. Stem Cells Dev, 2017, 26(1):15-24.
17
Shim S, Lee SB, Lee JG, et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation[J]. Exp Hematol, 2013, 41(4):346-53.e2.
18
Shao L, Sun Y, Zhang Z, et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation[J]. Blood, 2010, 115(23):4707-4714.
19
Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells[J]. Leukemia, 2007, 21(8):1733-1738.
20
Katsuda T, Kosaka N, Takeshita F, et al. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles[J]. Proteomics, 2013, 13(10/11):1637-1653.
21
梁雨蒙,王晓娜,邓磊, 等. 骨髓间充质干细胞微泡生物学特性及其促进造血干细胞体外扩增作用的研究[J]. 中国实验血液学杂志, 2017, 25(4):1187-1193.
22
Wen S, Dooner M, Cheng Y, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells[J]. Leukemia, 2016, 30(11):2221-2231.
23
Schoefinius JS, Brunswig-Spickenheier B, Speiseder T, et al. Mesenchymal stromal Cell-Derived extracellular vesicles provide Long-Term survival after total body irradiation without additional hematopoietic stem cell support[J]. Stem Cells, 2017, 35(12):2379-2389.
24
Chen H, Min XH, Wang QY, et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury[J]. Sci Rep, 2015, 5:8718.
25
Wang H, Sun RT, Li Y, et al. HGF gene modification in mesenchymal stem cells reduces Radiation-Induced intestinal injury by modulating immunity[J]. PLoS One, 2015, 10(5):e0124420.
26
Gong W, Guo M, Han Z, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury[J]. Cell Death Dis, 2016, 7(9):e2387.
27
Chen W, Ju S, Lu T, et al. Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury[J]. Cytokine, 2017, 95:27-34.
28
Zheng K, Wu W, Yang S, et al. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells[J]. Exp Ther Med, 2016, 11(6):2425-2431.
29
Płusa T. Stem/progenitor cells in diseases of the respiratory tract[J]. Pol Merkur Lekarski, 2017, 42(249):97-100.
30
Klein D, Schmetter A, Imsak R, et al. Therapy with multipotent mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis[J]. Antioxid Redox Sign, 2016, 24(2):53-69.
31
Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from Radiation-Induced endothelial cell loss by restoring superoxide dismutase 1 expression[J]. Antioxid Redox Signal, 2017, 26(11):563-582.
32
Maria OM, Maria AM, Ybarra N, et al. Mesenchymal stem cells adopt lung cell phenotype in normal and radiation-induced lung injury conditions[J]. Appl Immunohistochem Mol Morphol, 2016, 24(4):283-295.
33
Asmussen S, Ito H, Traber DL, et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia[J]. Thorax, 2014, 69(9):819-825.
34
Devaney J, Horie S, Masterson C, et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat[J]. Thorax, 2015, 70(7):625-635.
35
Xia C, Chang P, Zhang Y, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury[J]. Oncol Rep, 2016, 35(2):731-738.
36
Li Z, Hu X, Mao J, et al. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging[J]. Mol Imaging Biol, 2015, 17(2):185-194.
37
Jiang X, Jiang X, Qu C, et al. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats[J]. Cytotherapy, 2015, 17(5):560-570.
38
孙晓伟,黄皓,周勇军, 等. 不同输注途径对荧光素酶基因标记骨髓间充质干细胞体内分布的影响[J]. 中国组织工程研究, 2017, 21(05):676-681.
39
Zangi L, Margalit R, Reich-Zeliger S, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells[J]. Stem Cells, 2009, 27(11):2865-2874.
40
艾辉胜,余长林,乔建辉, 等. 山东济宁60CO辐射事故受照人员的临床救治疗[J]. 中华放射医学与防护杂志, 2007, 27(1):1-5.
41
Kursova LV, Konoplyannikov AG, Pasov VV, et al. Possibilities for the use of autologous mesenchymal stem cells in the therapy of radiation-induced lung injuries[J]. Bull Exp Biol Med, 2009, 147(4):542-546.
42
Guo M, Dong Z, Qiao J, et al. Severe acute radiation syndrome:treatment of a lethaylly 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells[J]. J Radiat Res, 2014, 55(2):205-209.
43
刘玉龙,王优优,余道江, 等. 南京"5.7"192 Ir源放射事故患者的临床救治[J]. 中国放射医学与防护杂志, 2016, 36(5):324-330.
44
谯智慧,张丹,熊玮. 8例临床级脐带间充质干细胞治疗放射性肺纤维化的观察[J]. 第三军医大学学报, 2017, 39(10):1013-1018.
45
Caplan AI, 廖联明, 王萍, 等. 间充质干细胞更改名称的时候到了[J]. 中华细胞与干细胞杂志(电子版), 2017, 7(5):253-258.
[1] 冉新泽, 王军平, 王涛, 王锋超, 程天民. 我国放射复合伤创面处理与创伤促愈的研究历程[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 280-284.
[2] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[11] 冯星, 靳洪涛, 马隽, 宋永周, 刘爱京. 间充质干细胞治疗炎性关节炎的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 87-92.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要