切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 120 -124. doi: 10.3877/cma.j.issn.2095-1221.2018.02.009

所属专题: 文献

综述

间充质干细胞治疗急性放射性损伤的研究
薛飞1, 黄平平1,()   
  1. 1. 300020 天津,中国医学科学院北京协和医学院血液学研究所
  • 收稿日期:2018-01-24 出版日期:2018-04-01
  • 通信作者: 黄平平
  • 基金资助:
    中国医学科学院医学与健康科技创新工程经费资助(2017-I2M-1-016)

Mesenchymal stem cells in the treatment of acute radiation-induced injury

Fei Xue1, Pingping Huang1,()   

  1. 1. Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
  • Received:2018-01-24 Published:2018-04-01
  • Corresponding author: Pingping Huang
  • About author:
    Corresponding author:Huang pingping, Email:
引用本文:

薛飞, 黄平平. 间充质干细胞治疗急性放射性损伤的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 120-124.

Fei Xue, Pingping Huang. Mesenchymal stem cells in the treatment of acute radiation-induced injury[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(02): 120-124.

急性放射性损伤是组织损伤的一种重要类型,目前未有较理想的治疗方案。间充质干细胞(MSCs)能够多向分化、自我更新,且具有分泌多种细胞因子、抗炎、免疫调节等生物活性。其在促进组织修复的优势显而易见,而移植的时机、剂量长期以来莫衷一是。致瘤性等安全问题制约其临床研究的进一步开展。近年来,MSCs趋向于无细胞化移植取得了明显成效。这一研究新进展势必迎来急性放射性损伤治疗的新格局,本文对此研究现状及进展进行综述。

Acute radiation injury is one of serious complication of exposure to irradiation, but there is still no effective means to prevent and treat it. However, mesenchymal stem cells (MSCs) are self-renewal and differentiating into various cell lineages. These cells possess attributes such as secreting a variety of cytokines, anti-inflammatory and immunosuppressive properties. The advantages of MSCs in tissue-repaired is conspicuous, but the timing and doses of transplants have been controversial. The safety problems such as tumorigenicity restrict clinical trials. Recently, the result of cell-free transplantation is fruitful, and the new situation definitely comes soon. This review summarizes and discusses recent advances on MSCs treating severe acute radiation.

表1 MSCs治疗放射性损伤的临床应用
1
Dicarlo AL, Tamarat R, Rios CI, et al. Cellular therapies for treatment of radiation injury: report from a NIH/NIAID and IRSN workshop[J]. Radiat Res, 2017, 188(2):e54-e75.
2
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
3
Blázquez-Prunera A, Díez JM, Gajardo R, et al. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction[J]. Stem Cell Res Ther, 2017, 8(1):103-114.
4
Lowe SW, Schmitt EM, Smith SW, et al. p53 is required for radiation-induced apoptosis in mouse thymocytes[J]. Nature, 1993, 362(6423):847-849.
5
Vilborg A, Wilhelm MT, Wiman KG. Regulation of tumor suppressor p53 at the RNA level[J]. J Mol Med (Berl), 2010, 88(7):645-652.
6
Vousden KH. p53 and PUMA: A deadly duo[J]. Science, 2005, 309(5741):1685-1686.
7
Buckbinder L, Talbott R, Velascomiguel S, et al. Induction of the growth inhibitor IGF-bingding protein-3 by p53[J]. Nature, 1995, 377(6550):646-649.
8
Burns TF, El-Deiry WS. The p53 pathway and apoptosis[J]. J Cell Physiol, 1999, 181(2):231-239.
9
Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis[J]. Oncogene, 2003, 22(37):5897-5906.
10
Herr I, Wilhelm D, Böhler T, et al. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis[J]. EMBO J, 1997, 16(20):6200-6208.
11
Liang L, Fan Y, Cheng J, et al. TAK1 ubiquitination regulates doxorubicin-induced NF-κB activation[J]. Cell Signal, 2013, 25(1):247-254.
12
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival[J]. J Cell Physiol, 2002, 192(1):1-15.
13
Blirando K, Hneino M, Martelly I, et al. Mast cells and ionizing radiation induce a synergistic expression of inflammatory genes in endothelial cells by a mechanism involving p38α MAP kinase and (p65) NF-κB activation[J]. Radiat Res, 2012, 178(6):556-567.
14
Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method[J]. Exp Hematol, 1974, 2(2):83-92.
15
Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment[J]. Nature, 2009, 460(7252):259-U124.
16
Barrachina L, Remacha AR, Romero A, et al. Priming equine bone Marrow-Derived mesenchymal stem cells with proinflammatory cytokines: implications in Immunomodulation-Immunogenicity balance, cell viability, and differentiation potential[J]. Stem Cells Dev, 2017, 26(1):15-24.
17
Shim S, Lee SB, Lee JG, et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation[J]. Exp Hematol, 2013, 41(4):346-53.e2.
18
Shao L, Sun Y, Zhang Z, et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation[J]. Blood, 2010, 115(23):4707-4714.
19
Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells[J]. Leukemia, 2007, 21(8):1733-1738.
20
Katsuda T, Kosaka N, Takeshita F, et al. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles[J]. Proteomics, 2013, 13(10/11):1637-1653.
21
梁雨蒙,王晓娜,邓磊, 等. 骨髓间充质干细胞微泡生物学特性及其促进造血干细胞体外扩增作用的研究[J]. 中国实验血液学杂志, 2017, 25(4):1187-1193.
22
Wen S, Dooner M, Cheng Y, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells[J]. Leukemia, 2016, 30(11):2221-2231.
23
Schoefinius JS, Brunswig-Spickenheier B, Speiseder T, et al. Mesenchymal stromal Cell-Derived extracellular vesicles provide Long-Term survival after total body irradiation without additional hematopoietic stem cell support[J]. Stem Cells, 2017, 35(12):2379-2389.
24
Chen H, Min XH, Wang QY, et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury[J]. Sci Rep, 2015, 5:8718.
25
Wang H, Sun RT, Li Y, et al. HGF gene modification in mesenchymal stem cells reduces Radiation-Induced intestinal injury by modulating immunity[J]. PLoS One, 2015, 10(5):e0124420.
26
Gong W, Guo M, Han Z, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury[J]. Cell Death Dis, 2016, 7(9):e2387.
27
Chen W, Ju S, Lu T, et al. Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury[J]. Cytokine, 2017, 95:27-34.
28
Zheng K, Wu W, Yang S, et al. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells[J]. Exp Ther Med, 2016, 11(6):2425-2431.
29
Płusa T. Stem/progenitor cells in diseases of the respiratory tract[J]. Pol Merkur Lekarski, 2017, 42(249):97-100.
30
Klein D, Schmetter A, Imsak R, et al. Therapy with multipotent mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis[J]. Antioxid Redox Sign, 2016, 24(2):53-69.
31
Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from Radiation-Induced endothelial cell loss by restoring superoxide dismutase 1 expression[J]. Antioxid Redox Signal, 2017, 26(11):563-582.
32
Maria OM, Maria AM, Ybarra N, et al. Mesenchymal stem cells adopt lung cell phenotype in normal and radiation-induced lung injury conditions[J]. Appl Immunohistochem Mol Morphol, 2016, 24(4):283-295.
33
Asmussen S, Ito H, Traber DL, et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia[J]. Thorax, 2014, 69(9):819-825.
34
Devaney J, Horie S, Masterson C, et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat[J]. Thorax, 2015, 70(7):625-635.
35
Xia C, Chang P, Zhang Y, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury[J]. Oncol Rep, 2016, 35(2):731-738.
36
Li Z, Hu X, Mao J, et al. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging[J]. Mol Imaging Biol, 2015, 17(2):185-194.
37
Jiang X, Jiang X, Qu C, et al. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats[J]. Cytotherapy, 2015, 17(5):560-570.
38
孙晓伟,黄皓,周勇军, 等. 不同输注途径对荧光素酶基因标记骨髓间充质干细胞体内分布的影响[J]. 中国组织工程研究, 2017, 21(05):676-681.
39
Zangi L, Margalit R, Reich-Zeliger S, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells[J]. Stem Cells, 2009, 27(11):2865-2874.
40
艾辉胜,余长林,乔建辉, 等. 山东济宁60CO辐射事故受照人员的临床救治疗[J]. 中华放射医学与防护杂志, 2007, 27(1):1-5.
41
Kursova LV, Konoplyannikov AG, Pasov VV, et al. Possibilities for the use of autologous mesenchymal stem cells in the therapy of radiation-induced lung injuries[J]. Bull Exp Biol Med, 2009, 147(4):542-546.
42
Guo M, Dong Z, Qiao J, et al. Severe acute radiation syndrome:treatment of a lethaylly 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells[J]. J Radiat Res, 2014, 55(2):205-209.
43
刘玉龙,王优优,余道江, 等. 南京"5.7"192 Ir源放射事故患者的临床救治[J]. 中国放射医学与防护杂志, 2016, 36(5):324-330.
44
谯智慧,张丹,熊玮. 8例临床级脐带间充质干细胞治疗放射性肺纤维化的观察[J]. 第三军医大学学报, 2017, 39(10):1013-1018.
45
Caplan AI, 廖联明, 王萍, 等. 间充质干细胞更改名称的时候到了[J]. 中华细胞与干细胞杂志(电子版), 2017, 7(5):253-258.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[6] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[7] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[10] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[14] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?