切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 259 -264. doi: 10.3877/cma.j.issn.2095-1221.2017.05.002

所属专题: 文献

论著

Epha4基因通过FGF信号通路调节大脑皮层发育
陈清法1, 韩发彬1,()   
  1. 1. 252000 聊城市人民医院组织工程与再生医学研究所
  • 收稿日期:2016-09-24 出版日期:2017-10-01
  • 通信作者: 韩发彬

Epha4 gene regulates corticogenesis through FGF signaling

Qingfa Chen1, Fabin Han1,()   

  1. 1. Institute of Tissue Engineering and Regenerative Medicine, The Liaocheng People's Hospital, Liaocheng 252000, China
  • Received:2016-09-24 Published:2017-10-01
  • Corresponding author: Fabin Han
  • About author:
    Corresponding author: Han Fabin, Email:
引用本文:

陈清法, 韩发彬. Epha4基因通过FGF信号通路调节大脑皮层发育[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(05): 259-264.

Qingfa Chen, Fabin Han. Epha4 gene regulates corticogenesis through FGF signaling[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(05): 259-264.

目的

阐明Epha4基因在大脑皮层发育早期放射性胶质细胞(RGCs)命运决定中的功能。

方法

利用Cre-loxp技术分别在孕龄为11.5 d或13.5 d的小鼠皮层细胞中敲掉Epha4基因。根据小鼠的基因型分为3组:对照组、NestinEpha4fx/fxGFAPEpha4fx/fx,分别通过尼氏染色、免疫荧光共染色及免疫印迹分析了突变小鼠大脑皮层表现型、大脑皮层RGCs增殖和分化及皮层细胞信号通路。组间比较利用F检验进行统计学分析。

结果

尼氏染色结果表明,与正常新生小鼠皮层(709±30)μm相比,在孕龄11.5 dEpha4基因敲除新生小鼠大脑皮层厚度减少至(475±66)μm,差异具有统计学意义(t = 7.252,P < 0.05),而孕龄13.5 dEpha4基因敲除新生小鼠大脑皮层厚度(727±37)μm,差异无统计学意义。BrdU标记及免疫荧光共染色结果表明,在孕龄14.5 d两种突变小鼠中RGCs增殖能力减弱(46±1)﹪ vs Epha4fx/fx(58?±?2)﹪,t = 10.72,P< 0.05;GFAPEpha4fx/fx(50±2)﹪ vs Epha4fx/fx(58±2)﹪,t = 5.575,P < 0.05),而向神经元分化能力增强(NestinEpha4fx/fx(34±5)﹪ vs Epha4fx/fx(25±1)﹪,t = 4.269,P < 0.05;GFAPEpha4fx/fx(35±2)﹪ vs Epha4fx/fx(25±1)﹪,t = 12.48,P < 0.05。Western blotting分析表明分离的皮层细胞经成纤维生长因子(FGFs)作用时ERK及FRS2α磷酸化减弱。

结论

Epha4基因决定大脑皮层发育早期RGCs的命运,这一过程是通过FGFs信号通路完成的。这些发现为临床治疗脊髓损伤及阿尔茨海默症等神经疾病提供了理论依据。

Objective

To illuminate the function ofEpha4gene in RGC cell fate determination during early corticogenesis.

Methods

Epha4gene was deleted in cortical cells at E11.5 or E13.5 using Cre-loxp method. The mice were divided into 3 groups: Group A (control mice), Group B (Nestin; Epha4fx/fxmutant mice) and Group C (GFAP; Epha4fx/fxmutant mice). Nissle staining was used to analyze the morphological changes of the mutant mice. Co-immunofluoresence was used to determine the proliferation and differentiation of RGC. Western blotting was used to detect the signaling pathway in the mutant mice. And the statistical analysis was achieved using Student'st-test.

Results

Nissle stainingshowed the size of the cerebral cortex at P0 was smaller than that of controls whenEpha4was deleted at E11.5 (475±66μmvs709±30μm,P < 0.05) but not when it was deleted at E13.5 (727±37μmvs709±30μm,P > 0.05). BrdU labeling followed by co-immunofluoresence showed the proliferation ability of RGC decreased (Nestin; Epha4fx/fx 46±1﹪ vs Epha4fx/fx 58±2﹪,P < 0.05;GFAP;Epha4fx/fx 50±2﹪ vs Epha4fx/fx 58±2﹪,P < 0.05), while the differentiation ability of RGC increased (Nestin; Epha4fx/fx 34±5﹪ vs Epha4fx/fx 25±1﹪,P < 0.05;GFAP;Epha4fx/fx 35±2﹪ vs Epha4fx/fx 25±1﹪,P < 0.05). Western blotting showed cortical cells from both deletion mutants revealed lower phosphorylation of ERK and FRS2αin the presence of FGF.

Conclusion

Epha4gene, in cooperation with an FGF signal, contributes to function in RGC cell fate determination during early corticogenesis. These findings provide important molecular evidence for the clinical treatment of neurodegenerative diseases such as spinal cord injury and Alzheimer disease.

图1 Cre-loxP方法获得Epha4基因特异敲除小鼠
图2 Epha4基因敲除小鼠冠状脑切片甲基蓝染色及定量分析
图3 Western blotting检测Epha4基因在Nestin;Epha4fx/fx)及GFAP;Epha4fx/fx)突变小鼠中的表达
表1 突变小鼠同正常小鼠皮层厚度及VZ+SVZ厚度比较(μm, ± s)
表2 突变小鼠同正常小鼠皮层RGCs和IPCs的增殖和分化比较(﹪, ± s)
图4 Epha4基因敲除小鼠皮层神经干细胞或神经前体祖细胞的增殖和分化
图5 Epha4基因敲除小鼠皮层细胞经FGF2刺激ERK1/2及FRS2α磷酸化
1
Rapacioli M, Palma V, Flores V. Morphogenetic and histogenetic roles of the Temporal-Spatial organization of cell proliferation in the vertebrate corticogenesis as revealed by inter-specific analyses of the optic tectum cortex development[J].Front Cell Neurosci, 2016, 10:67.
2
Homman-Ludiye J, Bourne JA. The marmoset: An emerging model to unravel the evolution and development of the Primate neocortex[J]. Dev Neurobiol, 2017, 77(3):263-272.
3
Rash BG, Lim HD, Breunig JJ, et al. FGF signaling expands embryonic cortical surface area by regulating Notch-Dependent neurogenesis[J]. J Neurosci, 2011, 31(43):15604-15617.
4
Dabrowski A, Umemori H. Buttressing a balanced brain:Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network[J]. Neurogenesis (Austin), 2016, 3(1):e1168504.
5
Cramer KS, Miko IJ. Eph-ephrin signaling in nervous system development[J].F1000Res, 2016, 5:413.
6
Todd KL, Baker KL, Eastman MB, et al. EphA4 regulates neuroblast and astrocyte organization in a neurogenic niche [J]. J Neurosci, 2017, 37(12):3331-3341.
7
North HA, Zhao XM, Kolk SM, et al. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling [J]. Development, 2009, 136(14):2467-2476.
8
Herrmann JE, Pence MA, Shapera EA, et al. Generation of an EphA4 conditional allele in mice [J]. Genesis, 2010, 48(2):101-105.
9
Tronche F, Kellendonk C, Kretz O, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety [J]. Nat Genet, 1999, 23(1):99-103.
10
Kang W, Wong LC, Shi SH, et al. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis[J]. J Neurosci, 2009, 29(46):14571-14580.
11
Furushima K, Yamamoto A, Nagano T, et al. Mouse homologues of Shisa antagonistic to Wnt and Fgf signalings[J]. Dev Biol, 2007, 306(2):480-492.
12
Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis[J]. J Comp Neurol, 2008, 508(1):28-44.
13
Yokote H, Fujita K, Jing X, et al. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains [J]. Proc Natl Acad Sci U S A, 2005, 102(52):18866-18871.
14
Sawada T, Jing X, Zhang Y, et al. Ternary complex formation of EphA4, FGFR and FRS2 alpha plays an important role in the proliferation of embryonic neural stem/progenitor cells[J].Genes to Cells, 2010, 15(3):297-311.
[1] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[2] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[3] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[4] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[5] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[6] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[10] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[11] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[12] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[13] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
[14] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[15] 朱敏, 李法强. 血清GFAP、UCH-L1联合VILIP-1水平对急性脑梗死神经功能预后不良的预测研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 452-457.
阅读次数
全文


摘要