切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 259 -264. doi: 10.3877/cma.j.issn.2095-1221.2017.05.002

所属专题: 文献

论著

Epha4基因通过FGF信号通路调节大脑皮层发育
陈清法1, 韩发彬1,()   
  1. 1. 252000 聊城市人民医院组织工程与再生医学研究所
  • 收稿日期:2016-09-24 出版日期:2017-10-01
  • 通信作者: 韩发彬

Epha4 gene regulates corticogenesis through FGF signaling

Qingfa Chen1, Fabin Han1,()   

  1. 1. Institute of Tissue Engineering and Regenerative Medicine, The Liaocheng People's Hospital, Liaocheng 252000, China
  • Received:2016-09-24 Published:2017-10-01
  • Corresponding author: Fabin Han
  • About author:
    Corresponding author: Han Fabin, Email:
引用本文:

陈清法, 韩发彬. Epha4基因通过FGF信号通路调节大脑皮层发育[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(05): 259-264.

Qingfa Chen, Fabin Han. Epha4 gene regulates corticogenesis through FGF signaling[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(05): 259-264.

目的

阐明Epha4基因在大脑皮层发育早期放射性胶质细胞(RGCs)命运决定中的功能。

方法

利用Cre-loxp技术分别在孕龄为11.5 d或13.5 d的小鼠皮层细胞中敲掉Epha4基因。根据小鼠的基因型分为3组:对照组、NestinEpha4fx/fxGFAPEpha4fx/fx,分别通过尼氏染色、免疫荧光共染色及免疫印迹分析了突变小鼠大脑皮层表现型、大脑皮层RGCs增殖和分化及皮层细胞信号通路。组间比较利用F检验进行统计学分析。

结果

尼氏染色结果表明,与正常新生小鼠皮层(709±30)μm相比,在孕龄11.5 dEpha4基因敲除新生小鼠大脑皮层厚度减少至(475±66)μm,差异具有统计学意义(t = 7.252,P < 0.05),而孕龄13.5 dEpha4基因敲除新生小鼠大脑皮层厚度(727±37)μm,差异无统计学意义。BrdU标记及免疫荧光共染色结果表明,在孕龄14.5 d两种突变小鼠中RGCs增殖能力减弱(46±1)﹪ vs Epha4fx/fx(58?±?2)﹪,t = 10.72,P< 0.05;GFAPEpha4fx/fx(50±2)﹪ vs Epha4fx/fx(58±2)﹪,t = 5.575,P < 0.05),而向神经元分化能力增强(NestinEpha4fx/fx(34±5)﹪ vs Epha4fx/fx(25±1)﹪,t = 4.269,P < 0.05;GFAPEpha4fx/fx(35±2)﹪ vs Epha4fx/fx(25±1)﹪,t = 12.48,P < 0.05。Western blotting分析表明分离的皮层细胞经成纤维生长因子(FGFs)作用时ERK及FRS2α磷酸化减弱。

结论

Epha4基因决定大脑皮层发育早期RGCs的命运,这一过程是通过FGFs信号通路完成的。这些发现为临床治疗脊髓损伤及阿尔茨海默症等神经疾病提供了理论依据。

Objective

To illuminate the function ofEpha4gene in RGC cell fate determination during early corticogenesis.

Methods

Epha4gene was deleted in cortical cells at E11.5 or E13.5 using Cre-loxp method. The mice were divided into 3 groups: Group A (control mice), Group B (Nestin; Epha4fx/fxmutant mice) and Group C (GFAP; Epha4fx/fxmutant mice). Nissle staining was used to analyze the morphological changes of the mutant mice. Co-immunofluoresence was used to determine the proliferation and differentiation of RGC. Western blotting was used to detect the signaling pathway in the mutant mice. And the statistical analysis was achieved using Student'st-test.

Results

Nissle stainingshowed the size of the cerebral cortex at P0 was smaller than that of controls whenEpha4was deleted at E11.5 (475±66μmvs709±30μm,P < 0.05) but not when it was deleted at E13.5 (727±37μmvs709±30μm,P > 0.05). BrdU labeling followed by co-immunofluoresence showed the proliferation ability of RGC decreased (Nestin; Epha4fx/fx 46±1﹪ vs Epha4fx/fx 58±2﹪,P < 0.05;GFAP;Epha4fx/fx 50±2﹪ vs Epha4fx/fx 58±2﹪,P < 0.05), while the differentiation ability of RGC increased (Nestin; Epha4fx/fx 34±5﹪ vs Epha4fx/fx 25±1﹪,P < 0.05;GFAP;Epha4fx/fx 35±2﹪ vs Epha4fx/fx 25±1﹪,P < 0.05). Western blotting showed cortical cells from both deletion mutants revealed lower phosphorylation of ERK and FRS2αin the presence of FGF.

Conclusion

Epha4gene, in cooperation with an FGF signal, contributes to function in RGC cell fate determination during early corticogenesis. These findings provide important molecular evidence for the clinical treatment of neurodegenerative diseases such as spinal cord injury and Alzheimer disease.

图1 Cre-loxP方法获得Epha4基因特异敲除小鼠
图2 Epha4基因敲除小鼠冠状脑切片甲基蓝染色及定量分析
图3 Western blotting检测Epha4基因在Nestin;Epha4fx/fx)及GFAP;Epha4fx/fx)突变小鼠中的表达
表1 突变小鼠同正常小鼠皮层厚度及VZ+SVZ厚度比较(μm, ± s)
表2 突变小鼠同正常小鼠皮层RGCs和IPCs的增殖和分化比较(﹪, ± s)
图4 Epha4基因敲除小鼠皮层神经干细胞或神经前体祖细胞的增殖和分化
图5 Epha4基因敲除小鼠皮层细胞经FGF2刺激ERK1/2及FRS2α磷酸化
1
Rapacioli M, Palma V, Flores V. Morphogenetic and histogenetic roles of the Temporal-Spatial organization of cell proliferation in the vertebrate corticogenesis as revealed by inter-specific analyses of the optic tectum cortex development[J].Front Cell Neurosci, 2016, 10:67.
2
Homman-Ludiye J, Bourne JA. The marmoset: An emerging model to unravel the evolution and development of the Primate neocortex[J]. Dev Neurobiol, 2017, 77(3):263-272.
3
Rash BG, Lim HD, Breunig JJ, et al. FGF signaling expands embryonic cortical surface area by regulating Notch-Dependent neurogenesis[J]. J Neurosci, 2011, 31(43):15604-15617.
4
Dabrowski A, Umemori H. Buttressing a balanced brain:Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network[J]. Neurogenesis (Austin), 2016, 3(1):e1168504.
5
Cramer KS, Miko IJ. Eph-ephrin signaling in nervous system development[J].F1000Res, 2016, 5:413.
6
Todd KL, Baker KL, Eastman MB, et al. EphA4 regulates neuroblast and astrocyte organization in a neurogenic niche [J]. J Neurosci, 2017, 37(12):3331-3341.
7
North HA, Zhao XM, Kolk SM, et al. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling [J]. Development, 2009, 136(14):2467-2476.
8
Herrmann JE, Pence MA, Shapera EA, et al. Generation of an EphA4 conditional allele in mice [J]. Genesis, 2010, 48(2):101-105.
9
Tronche F, Kellendonk C, Kretz O, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety [J]. Nat Genet, 1999, 23(1):99-103.
10
Kang W, Wong LC, Shi SH, et al. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis[J]. J Neurosci, 2009, 29(46):14571-14580.
11
Furushima K, Yamamoto A, Nagano T, et al. Mouse homologues of Shisa antagonistic to Wnt and Fgf signalings[J]. Dev Biol, 2007, 306(2):480-492.
12
Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis[J]. J Comp Neurol, 2008, 508(1):28-44.
13
Yokote H, Fujita K, Jing X, et al. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains [J]. Proc Natl Acad Sci U S A, 2005, 102(52):18866-18871.
14
Sawada T, Jing X, Zhang Y, et al. Ternary complex formation of EphA4, FGFR and FRS2 alpha plays an important role in the proliferation of embryonic neural stem/progenitor cells[J].Genes to Cells, 2010, 15(3):297-311.
[1] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[2] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[3] 白若靖, 郭军. 肺炎克雷伯菌肺炎与干扰素信号通路关系研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 71-74.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[6] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[7] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[8] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[9] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[10] 麦麦提依明·托合提, 柳叶, 张诚, 阿卜杜喀迪尔·牙森, 高峰, 王继超, 吴永刚. PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 73-79.
[11] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[12] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[13] 高琪, 彭拥军. 小胶质细胞在缺血性卒中后脑白质损伤中的作用及针刺干预机制[J/OL]. 中华针灸电子杂志, 2024, 13(02): 73-77.
[14] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要