切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 253 -258. doi: 10.3877/cma.j.issn.2095-1221.2017.05.001

所属专题: 文献

专家论坛

间充质干细胞更改名称的时候到了
Arnold I. Caplan1,()   
  1. 1. 44106 美国俄亥俄州克利夫兰市凯斯西储大学生物系骨骼研究中心
    2. 350112 福州,福建医科大学附属协和医院中心实验室
    3. 350025 福州总院福建省移植生物学重点实验室
  • 收稿日期:2017-08-24 出版日期:2017-10-01
  • 通信作者: Arnold I. Caplan

Mesenchymal stem cells:time to change the name

Arnold I. Caplan1()   

  • Received:2017-08-24 Published:2017-10-01
  • Corresponding author: Arnold I. Caplan
引用本文:

Arnold I. Caplan. 间充质干细胞更改名称的时候到了[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(05): 253-258.

Arnold I. Caplan. Mesenchymal stem cells:time to change the name[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(05): 253-258.

图1 间充质组织形成过程
1
Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5):641-650.
2
Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow[J]. Bone, 1992, 13(1):81-88.
3
Nakahara H, Bruder SP, Goldberg VM, et al. In vivo osteochondrogenic potential of cultured cells derived from the periosteum [J]. Clin Orthop Relat Res, 1990, 259:223-232.
4
Caplan AI. Biomaterials and bone repair[J]. Biomaterials, 1988, 87:15-24.
5
Caplan AI. Cartilage begets bone versus endochondral myelopoiesis[J]. Clin Orthop Relat Res, 1990, 261:257-267.
6
Caplan AI. Cell delivery and tissue regeneration[J]. J Control Release, 1990, 11:157-165.
7
Caplan AI. Stem cell delivery vehicle[J]. Biomaterials, 1990, 11:44-46.
8
Caplan AI. The mesengenic process[J]. Clin Plast Surg, 1994, 21(3):429-435.
9
Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2005, 7(5):393-395.
10
Turner L, Knoepfler P. Selling stem cells in the USA: assessing the Direct-to-Consumer industry[J]. Cell Stem Cell, 2016, 19(2):154-157.
11
ClinicalTrials. Gov. Mesenchymal stem cells (MSCs) clinical trials. Available at Accessed February 1, 2017.

URL    
12
Caplan AI. What's in a Name?[J]. Tissue Eng Part A, 2010, 16(8):2415-2417.
13
Meirelles Lda S, Fontes AM, Covas DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells[J]. Cytokine Growth Factor Rev, 2009, 20(5-6):419-427.
14
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators[J]. J Cell Biochem, 2006, 98(5):1076-1084.
15
Caplan AI, Correa D. The MSC: an injury drugstore[J]. Cell Stem Cell, 2011, 9(1):11-15.
16
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system[J]. Nat Rev Immunol, 2012, 12(5):383-396.
17
Caplan AI. Adult mesenchymal stem cells: When, where, and how[J]. Stem Cells Int, 2015, 2015:628767.
18
Caplan AI, Zwilling E, Kaplan NO. 3-acetylpyridine:Effects in vitro related to teratogenic activity in chicken embryos[J]. Science, 1968, 160(3831):1009-1010.
19
Caplan AI, Rosenberg MJ. Interrelationship between poly (ADP-Rib) synthesis, intracellular NAD levels, and muscle or cartilage differentiation from mesodermal cells of embryonic chick limb[J]. Proc Natl Acad Sci USA, 1975, 72(5):1852-1857.
20
Caplan AI. The molecular control of muscle and cartilage development[M]. In: 39th Annual Symposium of the Society for Developmental Biology, Ed. Subtelney S and Abbott U, Alan R. Liss, Inc., New York, pp. 37-68(1981).
21
Caplan AI, Koutroupas S. The control of muscle and cartilage development in the chick limb: the role of differential vascularization [J]. J Embryol Exp Morphol, 1973, 29(3):571-583.
22
Caplan AI. Molecular basis for limb morphogenesis[M]. In: Proceedings of the 5th International Conference on Birth Defects, Ed. Littlefield J and DeGrouchy J, Excerp. Medica.Amsterdam-Oxford, 1978:208-220.
23
Osdoby P, Caplan AI. First bone formation in the developing chick limb[J]. Dev Biol, 1981, 86(1):147-156.
24
Osdoby P, Caplan AI. Characterization of a bone-specific alkaline phosphatase in chick limb mesenchymal cell cultures[J]. Dev Biol, 1981, 86(1):136-146.
25
Caplan AI, Stoolmiller AC. Control of chondrogenic expression in mesodermal cells of embryonic chick limb[J]. Proc Natl Acad Sci USA, 1973, 70(6):1713-1717.
26
Rosenberg MJ, Caplan AI. Nicotinamide adenine dinucleotide levels in cells of developing chick limbs: possible control of muscle and cartilage development[J]. Dev Biol, 1974, 38(1):157-164.
27
Caplan AI, Syftestad G, Osdoby P. The development of embryonic bone and cartilage in tissue culture[J]. Clin Orthop Relat Res, 1983 (174):243-263.
28
Fell HB. The histogenesis of cartilage and bone in the long bones of the embryonic fowl[J]. J Morphol, 1925, 40(3):417-459.
29
Caplan AI. Bone development and repair[J]. Bioessays, 1987,6:171-175.
30
Caplan AI, Pechak, David G. The cellular and molecular embryology of bone formation[J].In: Peck W, ed. Bone and Mineral Research.New York: Elsevier, 1987:117-184.
31
Schmid TM, Linsenmayer TF. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues[J]. J Cell Biol, 1985, 100(2):598-605.
32
Solursh M, Jensen KL, Reiter RS, et al. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes[J]. Dev Biol, 1986, 117(1):90-101.
33
Caplan AI, Hascall VC. Structure anddevelopment changes in proteoglycans[M]. In:Naftolin F,Stubblefield PG, eds. Dilatation of the Uterine Cervix. New York: Raven Press,1980:79-98.
34
Caplan AI. Cartilage[J]. Sci Am, 1984,251:84-94.
35
Hascall VC, Oegema TR, Brown M, et al. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro[J]. J Biol Chem, 1976, 251(11):3511-3519.
36
De Luca S, Caplan AI, Hascall VC. Biosynthesis of proteoglycans by chick limb bud chondrocytes[J]. J Biol Chem, 1978, 253(13):4713-4720.
37
Carrino DA, Caplan AI. Isolation and preliminary characterization of proteoglycans synthesized by skeletal muscle[J]. J Biol Chem, 1982, 257(23):14145-14154.
38
Carrino DA, Caplan AI. Proteoglycans produced by skeletal muscle in vitro and in vivo[J]. Prog Clin Biol Res, 1982, 110(Pt B):379-389.
39
Urist MR. Bone: formation by autoinduction[J]. Science, 1965, 150(3698):893-899.
40
Urist MR, Dowell TA, Hay PH, et al. Inductive substrates for bone formation[J]. Clin Orthop Relat Res, 1968, 59:59-96.
41
Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein[J]. Proc Natl Acad Sci USA, 1979, 76(4):1828-1832.
42
Syftestad GT, Caplan AI. A fraction from extracts of demineralized adult bone stimulates the conversion of mesenchymal cells into chondrocytes[J]. Dev Biol, 1984, 104(2):348-356.
43
Syftestad GT, Lucas PA, Caplan AI. The in vitro chondrogenic response of limb-bud mesenchyme to a water-soluble fraction prepared from demineralized bone matrix[J]. Differentiation, 1985, 29(3):230-237.
44
Caplan AI, Syftestad GT, inventors; Patent, assignee. Bone protein purification process.1986. Patent No. 4,608,199.
45
Caplan Ai SG, Patent A. Process of adapting soluble bone protein for use in stimulating osteoinduction[J]. July 5, 1986 (4):327.
46
Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities[J]. Science, 1988, 242(4885):1528-1534.
47
Celeste AJ, Iannazzi JA, Taylor RC, et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone[J]. Proc Natl Acad Sci USA, 1990, 87(24):9843-9847.
48
Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration[J]. Nat Biotech, 1998, 16(3):247-252.
49
Reddi AH, Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats[J]. Proc Natl Acad Sci USA, 1972, 69(6):1601-1605.
50
Reddi AH. Bone and cartilage differentiation[J]. Curr Opin Genet Dev, 1994,4:737-744.
51
Cooper B. The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler[J]. Proc (Bayl Univ Med Cent), 2011, 24(2):115-118.
52
Connolly JF, Guse R, Tiedeman J, et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions[J]. Clin Orthop Relat Res, 1991 (266):259-270.
53
Connolly J, Guse R, Lippiello L, et al. Development of an osteogenic bone-marrow preparation[J]. J Bone Joint Surg Am, 1989, 71(5):684-691.
54
Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation, 1968, 6(2):230-247.
55
Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method [J]. Exp Hematol, 1974, 2(2):83-92.
56
Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors[J]. Ciba Found Symp, 1988, 136:42-60.
57
Owen M. Marrow stromal stem cells[J]. J Cell Sci Suppl, 1988,10:63-76.
58
Hernigou P. Autologous bone marrow grafting of avascular osteonecrosis before collapse[J]. Rev Rhum (Engl Ed), 1995,62:650-651.
59
Caplan AI, Haynesworth SE, inventors; Patent assignee. Method for enhancing theimplantation and differentiation of marrowderived mesenchymal cells[P]. 1993. Patent No.5,197,985.
60
Caplan AI, Haynesworth SE, inventors; Patent assignee. Method for treating connective tissue disorders[P]. 1993. Patent No.5, 226, 914.
61
Caplan AI, Haynesworth SE, inventors; Patent assignee. Human mesenchymal stem cells[P]. 1996. Patent No. 5,486,359.
62
Gerson SL, Caplan AI, Haynesworth SE, inventors; Patent, assignee. Transduced mesenchymal stem cells[P]. 1997. Patent No.5,591,625.
63
Caplan AI, Haynesworth SE, inventors; Patent, assignee. Monoclonal antibodies for human osteogenic cell surface antigens[P]. July 1, 1997. Patent No. 5,643,736.
64
Caplan AI. Muscle, cartilage and bone development and differentiation from chick limb mesenchymal cells[M]. In: Vertebrate Limb and Somite Morphogenesis. Ed. Ede DA, Hinchliffe JR and Balls M, Cambridge University Press, Cambridge, England, 1977:199-213.
65
Osdoby P, Caplan AI. The possible differentiation of osteogenic elements in vitro from chick limb mesodermal cells. I. Morphological evidence[J]. Dev Biol, 1976, 52(2):283-299.
66
Lennon DP, Haynesworth SE, Bruder SP, et al. Human and animal mesenchymal progenitor cells from bone marrow: Identification of serum for optimal selection and proliferation[J]. In Vitro Cell Dev Biol Anim, 1996, 32(10):602-611.
67
Haynesworth SE, Caplan AI. Diminution of the number of mesenchymal stem cells as a cause for skeletal aging[M]. In: Buckwalter JA, Goldberg VM, Woo SLY, eds. Musculoskeletal Soft-Tissue Aging: Impact on Mobility. Rosemont, IL: American Academy of Orthopedic Surgeons, 1994:79-87.
68
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
69
Dennis JE, Carbillet JP, Caplan AI, et al. The STRO-1+ marrow cell population is multipotential[J]. Cells Tissues Organs, 2002, 170(2-3):73-82.
70
Dennis JE, Caplan AI. Advances in mesenchymal stem cell biology[J]. Curr Opin Orthop, 2004, 15:341-346.
71
Caplan AI. All MSCs are pericytes?[J]. Cell Stem Cell, 2008,3:229-230.
72
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs[J]. Cell Stem Cell, 2008, 3(3):301-313.
73
Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive Nature and function of mesenchymal stem cells[J]. Nat Rev Mol Cell Biol, 2011, 12(2):126-131.
74
Alcayaga-Miranda F, Cuenca J, Luz-Crawford P, et al. Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells[J]. Stem Cell Res Ther, 2015, 6:32-43.
75
Khoury M, Alcayaga-Miranda F, Illanes SE et al. The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy[J]. Front Immunol, 2014,5:205.
76
Krasnodembskaya A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37[J]. Stem Cells, 2010, 28(12):2229-2238.
77
da Silva Meirelles L, de Deus Wagatsuma VM, Malta TM, et al. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue [J]. Exp Cell Res, 2016, 349(2):239-254.
78
da Silva Meirelles L, Malta TM, de Deus Wagatsuma VM, et al. Cultured human adipose tissue pericytes and mesenchymal stromal cells display a very similar gene expression profile[J]. Stem Cells Dev, 2015, 24(23):2822-2840.
79
Somoza RA, Correa D, Caplan AI. Roles for mesenchymal stem cells as medicinal signaling cells[J]. Nat Protoc, Vol 11 No 1. 2015 [Epub ahead of print]. Available at

URL    
80
Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence[J]. Nature, 2013, 502(7473):637-643.
81
Sá da Bandeira D, Casamitjana J, Crisan M. Pericytes, integral components of adult hematopoietic stem cell niches[J]. Pharmacol Ther, 2017, 171:104-113.
82
Tavazoie M, Van der Veken L, Silva-Vargas V, et al. A specialized vascular niche for adult neural stem cells[J]. Cell Stem Cell, 2008, 3(3):279-288.
83
Bautch VL. Stem cells and the vasculature[J]. Nat Med, 2011, 17(11):1437-1443.
84
Chong James JH, Chandrakanthan V, Xaymardan M, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin[J]. Cell Stem Cell, 2011, 9(6):527-540.
85
Yoo JU, Barthel TS, Nishimura K, et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells[J]. J Bone Joint Surg Am, 1998, 80(12):1745-1757.
86
Diekman BO, Rowland CR, Lennon DP, et al. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix[J]. Tissue Eng Part A, 2010, 16(2):523-533.
87
Geevarghese A, Herman IM. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies[J]. Transl Res, 2014, 163(4):296-306.
88
Guimarães-Camboa N, Cattaneo P, Sun Y, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo[J]. Cell Stem Cell, 2017, 20(3):1-15.
89
Deasy BM, Gharaibeh BM, Pollett JB, et al. Long-term self-renewal of postnatal muscle-derived stem cells[J]. Mol Biol Cell, 2005, 16(7):3323-3333.
90
Tao H, Han Z, Han ZC, et al. Proangiogenic features of mesenchymal stem cells and their therapeutic applications[J]. Stem Cells Int, 2016, 2016:1314709.
91
Overturf K, al-Dhalimy M, Ou CN, et al. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes[J]. Am J Pathol, 1997, 151(5):1273-1280.
92
Kay M. Lexemic change and semantic shift in disease names[J]. Cult Med Psychiatry, 1979, 3(1):73-94.
93
Lin P, Correa D, Kean TJ, et al. Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow[J]. Mol Ther, 2014, 22(1):160-168.
94
Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine[J]. Exp Mol Med, 2013, 45:e54.
95
Murugan V. Embryonic stem cell research: a decade of debate from Bush to Obama[J]. Yale J Biol Med, 2009, 82(3):101-103.
96
Couzin J, Vogel G. Renovating the heart[J]. Science, 2004, 304(5668): 192-194.
97
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders[J]. Brain Res, 2014, 1573:92-107.
98
Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels[J]. Dev Cell, 2010, 19(2):329-344.
99
Boyle AJ, Schulman SP, Hare JM. Stem cell therapy for cardiac repair. Ready or the next step. Circulation, 2006,114: 339-352.
100
Correa D, Somoza RA, Lin P, et al. Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche [J].Int J Cancer, 2016, 138(2):417-427.
101
Tallheden T, Dennis JE, Lennon DP, et al. Phenotypic plasticity of human articular chondrocytes[J]. J Bone Joint Surg Am, 2003, 85-A(suppl 2):93-100.
No related articles found!
阅读次数
全文


摘要