切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (03) : 168 -172. doi: 10.3877/cma.j.issn.2095-1221.2017.03.009

所属专题: 文献

综述

淋巴细胞亚群成员研究进展
马锡慧1, 肖漓1,()   
  1. 1. 100091 北京,解放军第309医院器官移植研究所移植研究室 北京市器官移植与免疫调节重点实验室
  • 收稿日期:2017-01-03 出版日期:2017-06-01
  • 通信作者: 肖漓
  • 基金资助:
    解放军第309医院院内课题(2016MS-002)

Research progress in members of lymphocyte subsets

Xihui Ma1, Li Xiao1,()   

  1. 1. Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Laboratory of Organ Transplant Institue, the 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
  • Received:2017-01-03 Published:2017-06-01
  • Corresponding author: Li Xiao
  • About author:
    Corresponding author:Xiao Li, Email:
引用本文:

马锡慧, 肖漓. 淋巴细胞亚群成员研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(03): 168-172.

Xihui Ma, Li Xiao. Research progress in members of lymphocyte subsets[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(03): 168-172.

淋巴细胞是人体重要的免疫细胞,占外周血白细胞总数的20﹪~ 45﹪,主要分为T细胞、B细胞和NK细胞三大类。根据细胞表面标志及功能特征,将淋巴细胞亚群分为CD3+ CD4+辅助性T细胞、CD3+CD8+的细胞毒性T细胞、CD19+ B细胞、CD16+ CD56+ NK细胞。随着基础免疫学及免疫学技术的不断发展,临床和科研工作者不断地将淋巴细胞亚群细化并发现一些新的亚群,包括γδT细胞、Th1/Th2细胞、Th17细胞、Th9细胞、Tfh细胞、Treg细胞、Breg细胞、NKT细胞和NKB细胞等,淋巴细胞亚群的内容也随之被赋予了新的定义,现将近年来淋巴细胞亚群的研究进展进行综述。

Lymphocytes are very important immune cells in the body, accounting for 20﹪ ~ 45﹪ of peripheral leukocytes. The three major subpopulation of lymphocytes are T cells, B cells and NK cells. According to different surface markers and functional characteristics, lymphocytes are mainly divided into CD3+ CD4+ helper T cells, CD3+ CD8+ cytotoxic T cells, CD19+ B cells and CD16+ CD56+ NK cells. With the development of basic immunology and immunological techniques, new lymphocyte subsets are proposed, including gamma delta T cells, Th1/Th2 cells, Th17 cells, Th9 cells, Tfh cells, Treg cells, Breg cells, NKT cells, NKB cells, etc.The definition of lymphocyte subsets are refined constantly. The present review summarizes recent research progress of lymphocyte subsets.

表1 淋巴细胞亚群成员
1
Lv YF, Yan ZY, Chen NY, et al. Analysis of lymphocyte subsets in peripheral blood of patients with aplastic anemia or hypoplastic myelodysplastic syndrome[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2016, 24(5):1505-1510.
2
Rudnicka J, Czerwiec M, Grywalska E, et al. Influence of fingolimod on basic lymphocyte subsets frequencies in the peripheral blood of multiple sclerosis patients-preliminary study[J]. Cent Eur J Immunol, 2015, 40(3):354-359.
3
Niu J, Chang Y, Lu X, et al. Effect of dendritic cell vaccine therapy on lymphocyte subpopulation in refractory primary brain tumor[J]. Indian J Cancer, 2016, 52(4):587-589.
4
Hsieh CT, Luo YH, Chien CS, et al. Induced pluripotent stem cell-conditioned medium suppressed melanoma tumorigenicity through the enhancement of Natural-Killer cellular immunity[J]. J Immunother, 2016, 39(4):153-159.
5
Shao B, Li HP, Di LJ, et al. Predictive and prognostic value of monitoring lymphocyte subsets in peripheral blood before and after chemotherapy in patients with metastatic breast cancer[J]. Beijing Da Xue Xue Bao, 2016, 48(2):304-309.
6
Yushchuk ND, Gadzhikulieva MM, Balmasova IP, et al. The role of immune factors in the progression of chronic kidney diseases in HIV infection[J]. Ter Arkh, 2016, 88(3):56-61.
7
Lisse IM, Qureshi K, Poulsen A, et al. T-lymphocyte subsets and eosinophil counts in acute and convalescence chickenpox infection: a household study in Guinea-Bissau[J]. J Infect, 2005, 50(2):125-129.
8
Yin M, Zhang H, Xu X, et al. Effects of sanjin tablets on T lymphocyte subsets of peripheral blood of women with recurrent urinary tract infection[J]. Zhongguo Zhong Yao Za Zhi, 2011, 36(16):2294-2296.
9
Bravo Soto JA, Esteban De La Rosa RJ, Luna Del Castillo JD, et al. Effect of mycophenolate mofetil regimen on peripheral blood lymphocyte subsets in kidney transplant recipients[J]. Transplant Proc, 2003, 35(4):1355-1359.
10
Calarota SA, Zelini P, De Silvestri A, et al. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients[J]. Transplantation, 2012, 93(1):112-119.
11
Cho JH, Yoon YD, Jang HM, et al. Immunologic monitoring of T-Lymphocyte subsets and Hla-Dr-Positive monocytes in kidney transplant recipients: a prospective, observational cohort study[J]. Medicine (Baltimore), 2015, 94(44):e1902.
12
Jiang Y, Li TS, Zhao Y, et al. Changes of lymphocyte subsets in autologous hemopoietic stem cell transplantation for severe/refractory autoimmune disease[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2007, 29(3):388-393.
13
Kremer JM, Lawrence DA, Hamilton R, et al. Long-term study of the impact of methotrexate on serum cytokines and lymphocyte subsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures[J]. RMD open, 2016, 2(1):e000287.
14
Francisco CO, Catai AM, Moura-Tonello SC, et al. Cytokine profile and lymphocyte subsets in type 2 diabetes[J]. Braz J Med Biol Res, 2016, 49(4):e5062.
15
Bank I. The role of γδ T cells in fibrotic diseases[J]. Rambam Maimonides Med J, 2016, 7(4):e0029.
16
Zou C, Zhao P, Xiao Z, et al. γδ T cells in cancer immunotherapy[J]. Oncotarget, 2017, 8(5):8900-8909.
17
Henriques A, Silva C, Santiago M, et al. Subset-specific alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients[J]. Inflamm Res, 2016, 65(12):985-994.
18
Murakami T, Hatano S, Yamada H, et al. Two types of interleukin 17A-Producing γδ T cells in protection against pulmonary infection with klebsiella pneumoniae[J]. J Infect Dis, 2016, 214(11):1752-1761.
19
Choi EJ, Debnath T, Tang Y, et al. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance[J]. Biomed Pharmacother, 2016, 84:870-877.
20
Gupta DL, Bhoi S, Mohan T, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis[J]. Cytokine, 2016, 88:214-221.
21
Christiaansen AF, Syed MA, Ten Eyck PP, et al. Altered Treg and cytokine responses in RSV-infected infants[J]. Pediatr Res, 2016, 80(5):702-709.
22
Siemeni T, Knöfel AK, Madrahimov N, et al. In vivo development of transplant arteriosclerosis in humanized mice reflects alloantigen recognition and peripheral Treg phenotype of lung transplant recipients[J]. Am J Transplant, 2016, 16(11):3150-3162.
23
Jeon YH, Choi YS. Follicular helper T (Tfh) cells in autoimmune diseases and allograft rejection[J]. Immune Netw, 2016, 16(4):219-232.
24
Yamasaki S, Shimizu K, Kometani K, et al. In vivo dendritic cell targeting cellular vaccine induces CD4(+) Tfh cell-dependent antibody against influenza virus[J]. Sci Rep, 2016, 6:35173.
25
Luk CC, Tam LS, Kwan BC, et al. Intrarenal and urinary Th9 and Th22 cytokine gene expression in lupus nephritis[J]. J Rheumatol, 2015, 42(7):1150-1155.
26
Ryba-Stanisławowska M, Werner P, Brandt A, et al. Th9 and Th22 immune response in young patients with type 1 diabetes[J]. Immunol Res, 2016, 64(3):730-735.
27
Kato S, Asano N, Miyata-Takata T, et al. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases[J]. Am J Surg Pathol, 2015, 39(4):462-471.
28
Nakajima H, Murakami Y, Morii E, et al. Induction of eEF2-specific antitumor CTL responses in vivo by vaccination with eEF2-derived 9mer-peptides[J]. Oncol Rep, 2016, 35(4):1959-1966.
29
Cho S, Dong S, Parent KN, et al. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers[J]. J Drug Target, 2016, 24(4):328-339.
30
Xiao X, Lao XM, Chen MM, et al. PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression[J]. Cancer Discov, 2016, 6(5):546-559.
31
Kalampokis I, Venturi GM, Poe JC, et al. The regulatory B cell compartment expands transiently during childhood and is contracted in children with autoimmunity[J]. Arthritis Rheumatol, 2017, 69(1):225-238.
32
Ding T, Yan F, Cao S, et al. Regulatory B cell: New member of immunosuppressive cell club[J]. Hum Immunol, 2015, 76(9):615-621.
33
Wolter F, Glässner A, Krämer B, et al. Hypoxia impairs anti-viral activity of natural killer (NK) cells but has little effect on anti-fibrotic NK cell functions in hepatitis C virus infection[J]. J Hepatol, 2015, 63(6):1334-1344.
34
Muntasell A, Costa-Garcia M, Vera A, et al. Priming of NK cell anti-viral effector mechanisms by direct recognition of human cytomegalovirus[J]. Front Immunol, 2013, 4:40.
35
Krzywinska E, Allende-Vega N, Cornillon A, et al. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers[J]. EBioMedicine, 2015, 2(10):1364-1376.
36
Polansky JK, Bahri R, Divivier M, et al. High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation Independent manner[J]. Sci Rep, 2016, 6:19699.
37
Galazka G, Jurewicz A, Domowicz M, et al. HINT1 peptide/Hsp70 complex induces NK-cell-dependent immunoregulation in a model of autoimmune demyelination[J]. Eur J Immunol, 2014, 44(10):3026-3044.
38
Viale R, Ware R, Maricic I, et al. NKT cell subsets can exert opposing effects in autoimmunity, tumor surveillance and inflammation[J]. Curr Immunol Rev, 2012, 8(4):287-296.
39
Vas J, Mattner J, Richardson S, et al. Regulatory roles for NKT cell ligands in environmentally induced autoimmunity[J]. J Immunol, 2008, 181(10):6779-6788.
40
Reis EA, Athanazio DA, Lima I, et al. NK and NKT cell dynamics after rituximab therapy for systemic lupus erythematosus and rheumatoid arthritis[J]. Rheumatol Int, 2009, 29(4):469-475.
41
Aggarwal A, Sharma A, Bhatnagar A. Bi(o)communications among peripheral blood fractions: a focus on NK and NKT cell biology in rheumatoid arthritis[J]. Autoimmunity, 2013, 46(4):238-250.
42
Wang S, Xia P, Chen Y, et al. Natural killer-like B cells prime innate lymphocytes against microbial infection[J]. Immunity, 2016, 45(1):131-144.
[1] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[2] 张艳兰, 徐琳, 王彩英, 庞琳. 淋巴细胞亚群在儿童重症甲型流感诊断中的价值[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(06): 368-373.
[3] 陈惠丽, 刘曦, 黄珊凤, 邵迪, 夏瑾瑜. 新型冠状病毒肺炎患者外周血T淋巴细胞亚群变化[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(02): 99-104.
[4] 胡文佳, 陈铁龙, 严亚军, 邓莉平, 骆名其, 宋世会, 陈小平, 熊勇. 44例不同严重程度新型冠状病毒肺炎患者临床检测指标分析[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 15-21.
[5] 王凛介, 朱科达, 刘风云, 马佳星, 陶丽红, 张辰伟. 系统性红斑狼疮患者不同巨细胞病毒感染状态淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(06): 501-506.
[6] 夏爽, 曹敏, 席翔. 后腹腔镜肾部分切除术治疗老年T1b期肾癌对患者血清T淋巴细胞亚群及预后生存的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(05): 406-410.
[7] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[8] 陈若红, 冯业成, 严灵丽. 热毒宁联合阿奇霉素序贯疗法对支原体肺炎患儿的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 88-90.
[9] 泽仁尼玛, 杨建蓉, 李明琴, 陈颖. 阿莫西林/克拉维酸钾对肺结核患者淋巴细胞亚群CD4水平的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 61-63.
[10] 吴桂辉, 黄涛, 罗槑, 蔡阳, 任利红. 活动性肺结核患者病情严重程度与维生素D及T细胞亚群的相关性分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 510-512.
[11] 陈艳丽, 王媛媛, 张勇, 李文洁. 中晚期非小细胞肺癌患者化疗前后T淋巴细胞亚群表达差异分析及临床意义[J]. 中华肺部疾病杂志(电子版), 2020, 13(01): 13-17.
[12] 唐艳林, 王锋, 刘自刚, 何源. 外周血T淋巴细胞亚群及早期炎症标志物表达对老年非小细胞肺癌化疗预后的影响分析[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 97-102.
[13] 韩永清, 饶敏超, 傅峰, 黄开荣. 参芪十一味颗粒联合FOLFOX4方案化疗对晚期结直肠癌患者的近期疗效及其对血清IL-35、IL-37和T淋巴细胞亚群的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 400-404.
[14] 马静静, 伍丹丹, 张吉翔, 朱刚艳, 陈国忠, 杨英杰, 雷媛, 苏文豪, 董卫国. 新冠肺炎患者外周血T淋巴细胞亚群的变化及意义[J]. 中华临床医师杂志(电子版), 2020, 14(10): 759-763.
[15] 黄山, 吕松琴, 张娟, 徐丽萍, 李佳能, 李晓非. 云南地区新发艾滋病合并其他病原微生物感染患者外周血T淋巴细胞亚群分布特征初探[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 16-20.
阅读次数
全文


摘要