1 |
SVN Task Force for Clinical Practice Guideline. 2009 clinical practice guideline for patients undergoing endovascular repair of abdominal aortic aneurysms (AAA)[J]. J Vasc Nurs, 2009, 27(2):48-63.
|
2 |
Nordon IM, Hinchliffe RJ, Loftus IM, et al. Pathophysiology and epidemiology of abdominal aortic aneurysms[J]. Nat Rev Cardiol, 2011, 8(2):92-102.
|
3 |
Kochanek KD, Xu J, Murphy SL, et al. Deaths: final data for 2009[J]. Natl Vital Stat Rep, 2011, 60(3):1-116.
|
4 |
Aoki H, Yoshimura K, Matsuzaki M. Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy[J]. J Mol Med (Berl), 2007, 85(10):1077-1088.
|
5 |
Englund R, Hudson P, Hanel K, et al. Expansion rates of small abdominal aortic aneurysms[J]. Aust N Z J Surg, 1998, 68(1):21-24.
|
6 |
Pearce WH, Shively VP. Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs[J]. Ann N Y Acad Sci, 2006, 1085:117-132.
|
7 |
Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: basic mechanisms and clinical implications[J]. Curr Probl Surg, 2002, 39(2):110-230.
|
8 |
Uitto J, Christiano AM, Kähäri VM, et al. Molecular biology and pathology of human elastin[J]. Biochem Soc Trans, 1991, 19(4):824-829.
|
9 |
Liu JM, Davidson JM. The elastogenic effect of recombinant transforming growth factor-beta on porcine aortic smooth muscle cells[J]. Biochem Biophys Res Commun, 1988, 154(3):895-901.
|
10 |
Foster J, Rich CB, Florini JR. Insulin-like growth factor I, somatomedin C, induces the synthesis of tropoelastin in aortic tissue[J]. Coll Relat Res, 1987, 7(3):161-169.
|
11 |
Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages[J]. J Clin Invest, 1995, 96(1):318-326.
|
12 |
Palombo D, Maione M, Cifiello BI, et al. Matrix metalloproteinases. Their role in degenerative chronic diseases of abdominal aorta[J]. J Cardiovasc Surg(Torino), 1999, 40(2):257-260.
|
13 |
Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease[J]. Biochem Pharmacol, 2009, 78(6):539-552.
|
14 |
Juvonen J, Surcel HM, Satta J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 1997, 17(11):2843-2847.
|
15 |
Middleton RK, Lloyd GM, Bown MJ, et al. The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study[J]. J Vasc Surg, 2007, 45(3):574-580.
|
16 |
Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease[J]. Circ Res, 2004, 95(9):858-866.
|
17 |
Huffman MD, Curci JA, Moore G, et al. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms[J]. Surgery, 2000, 128(3):429-438.
|
18 |
Von Wnuck Lipinski K, Keul P, Lucke S, et al. Degraded collagen induces calpain-mediated apoptosis and destruction of the X-chromosome-linked inhibitor of apoptosis (xIAP) in human vascular smooth muscle cells[J]. Cardiovasc Res, 2006, 69(3):697-705.
|
19 |
Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro[J]. Circ Res, 2000, 86(12):1259-1265.
|
20 |
Hashizume R, Yamawaki-Ogata A, Ueda Y, et al. Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice[J]. J Vasc Surg, 2011, 54(6):1743-1752.
|
21 |
Hsiao ST, Lokmic Z, Peshavariya H, et al. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells[J]. Stem Cells Dev, 2013, 22(10):1614-1623.
|
22 |
Fan J, Li X, Yan YW, et al. Curcumin attenuates rat thoracic aortic aneurysm formation by inhibition of the c-Jun N-terminal kinase pathway and apoptosis[J]. Nutrition, 2012, 28(10):1068-1074.
|
23 |
Xiong F, Zhao J, Zeng G, et al. Inhibition of AAA in a rat model by treatment with ACEI perindopril[J]. J Surg Res, 2014, 189(1):166-173.
|
24 |
Liao S, Miralles M, Kelley BJ, et al. Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors[J]. J Vasc Surg, 2001, 33(5):1057-1064.
|
25 |
Miyake T, Morishita R. Pharmacological treatment of abdominal aortic aneurysm[J]. Cardiovasc Res, 2009, 83(3):436-443.
|
26 |
Schouten O, Van Laanen JH, Boersma E, et al. Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth[J]. Eur J Vasc Endovasc Surg, 2006, 32(1):21-26.
|
27 |
Hackam DG, Thiruchelvam D, Redelmeier DA. Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study[J]. Lancet, 2006, 368(9536):659-665.
|
28 |
Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms[J]. J Clin Invest, 2000, 105(11):1641-1649.
|
29 |
Walton LJ, Franklin IJ, Bayston T, et al. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms:implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms[J]. Circulation, 1999, 100(1):48-54.
|
30 |
Yoshimura K, Aoki H, Ikeda Y, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase[J]. Nat Med, 2005, 11(12):1330-1338.
|
31 |
Long MY, Li HH, Pen XZ, et al. Expression of chemokine receptor-4 in bone marrow mesenchymal stem cells on experimental rat abdominal aortic aneurysms and the migration of bone marrow mesenchymal stem cells with stromal-derived factor-1[J]. Kaohsiung J Med Sci, 2014, 30(5):224-228.
|
32 |
Yamawaki-Ogata A, Fu X, Hashizume R, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model[J]. Eur J Cardiothorac Surg, 2014, 45(5):e156-e165.
|
33 |
Kingham PJ, Kolar MK, Novikova LN, et al. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair[J]. Stem Cells Dev, 2014, 23(7):741-754.
|
34 |
François M, Romieu-Mourez R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation[J]. Mol Ther, 2012, 20(1):187-195.
|
35 |
Davis TA, Anam K, Lazdun Y, et al. Adipose-derived stromal cells promote allograft tolerance induction[J]. Stem Cells Transl Med, 2014, 3(12):1444-1450.
|
36 |
Cho DI, Kim MR, Jeong HY, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages[J]. Exp Mol Med, 2014, 46:e70.
|
37 |
Abumaree MH, Al Jumah MA, Kalionis B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages[J]. Stem Cell Rev, 2013, 9(5):620-641.
|
38 |
Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[J]. PLoS One, 2008, 3(4):e1886.
|
39 |
Mendez JJ, G haedi M, Sivarapatna A, et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo[J]. Biomaterials, 2015, 40:61-71.
|
40 |
Meng X, Yang J, Zhang K, et al. Regulatory T cells prevent angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E knockout mice[J]. Hypertension, 2014, 64(4):875-882.
|
41 |
Allaire E, Muscatelli-Groux B, Guinault AM, et al. Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis[J]. Ann Surg, 2004, 239(3):417-427.
|
42 |
Allaire E, Muscatelli-Groux B, Mandet C, et al. Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation[J]. J Vasc Surg, 2002, 36(5):1018-1026.
|
43 |
Allaire E, Dai J, Schneider F, et al. Local endovascular treatment of aortic aneurysms. From operating theater to lab bench.[J]. Arch Mal Coeur Vaiss, 2004, 97(9):894-898.
|
44 |
Bekhite MM, Finkensieper A, Rebhan J, et al. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells[J]. Stem Cells Dev, 2014, 23(4):333-351.
|
45 |
Marra KG, Brayfield CA, Rubin JP. Adipose stem cell differentiation into smooth muscle cells[J]. Methods Mol Biol, 2011, 702:261-268.
|
46 |
Wang C, Yin S, Cen L, et al. Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-beta1 and bone morphogenetic protein-4[J]. Tissue Eng Part A, 2010, 16(4):1201-1213.
|
47 |
Curci JA. Digging in the"soil"of the aorta to understand the growth of abdominal aortic aneurysms[J]. Vascular, 2009, 17(Suppl 1):S21-29.
|
48 |
Schneider F, Saucy F, De Blic R, et al. Bone marrow mesenchymal stem cells stabilize already-formed aortic aneurysms more efficiently than vascular smooth muscle cells in a rat model[J]. Eur J Vasc Endovasc Surg, 2013, 45(6):666-672.
|
49 |
Tian X, Fan J, Yu M, et al. Adipose stem cells promote smooth muscle cells to secrete elastin in rat abdominal aortic aneurysm[J]. PLoS One, 2014, 9(9):e108105.
|
50 |
Park HS, Choi GH, Hahn S, et al. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms[J]. Biochem Biophys Res Commun, 2013, 431(2):326-331.
|
51 |
Turnbull IC, Hadri L, Rapti K, et al. Aortic implantation of mesenchymal stem cells after aneurysm injury in a porcine model[J]. J Surg Res, 2011, 170(1):e179-e188.
|
52 |
Riera Del Moral L, Largo C, Ramirez JR, et al. Potential of mesenchymal stem cell in stabilization of abdominal aortic aneurysm sac[J]. J Surg Res, 2015, 195(1):325-333.
|
53 |
Colazzo F, Sarathchandra P, Smolenski RT, et al. Extracellular matrix production by adipose-derived stem cells: implications for heart valve tissue engineering[J]. Biomaterials, 2011, 32(1):119-127.
|
54 |
Chaterji S, Kim P, Choe SH, et al. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function[J]. Tissue Eng Part A, 2014, 20(15/16):2115-2126.
|
55 |
Stegemann JP, Nerem RM. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two-and three-dimensional culture[J]. Exp Cell Res, 2003, 283(2):146-155.
|
56 |
Hamati HF, Britton EL, Carey DJ. Inhibition of proteoglycan synthesis alters extracellular matrix deposition, proliferation, and cytoskeletal organization of rat aortic smooth muscle cells in culture[J]. J Cell Biol, 1989, 108(6):2495-2505.
|
57 |
Swaminathan G, Gadepalli VS, Stoilov I, et al. Pro-elastogenic effects of bone marrow mesenchymal stem cell-derived smooth muscle cells on cultured aneurysmal smooth muscle cells[J], J Tissue Eng Regen Med, 2014, doi: 10.1002/term.1964. [Epub ahead of print].
|
58 |
Mushtaq M, Difede DL, Golpanian S, et al. Rationale and design of the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy(the POSEIDON-DCM study):a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy[J]. J Cardiovasc Transl Res, 2014, 7(9):769-780.
|
59 |
Heldman AW, Difede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial[J]. JAMA, 2014, 311(1):62-73.
|
60 |
Karantalis V, Difede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function,tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting:The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery(Prometheus)trial[J]. Circ Res, 2014, 114(8):1302-1310.
|
61 |
Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics[J]. J Am Coll Cardiol, 2013, 61(23):2329-2338.
|
62 |
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome[J]. Biochimie, 2013, 95(12):2196-2211.
|
63 |
Timmers L, Lim SK, Hoefer IE, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction[J]. Stem Cell Res, 2011, 6(3):206-214.
|
64 |
Timmers L, Lim SK, Arslan F, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium[J]. Stem Cell Res, 2007, 1(2):129-137.
|
65 |
Galmiche G, Labat C, Mericskay M, et al. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice[J]. Circ Res, 2013, 112(7):1035-1045.
|