切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (03) : 173 -177. doi: 10.3877/cma.j.issn.2095-1221.2017.03.010

所属专题: 文献

综述

间充质干细胞治疗主动脉瘤的研究进展
杨俊林1, 曲乐丰1,()   
  1. 1. 200003 上海长征医院血管外科
  • 收稿日期:2017-02-14 出版日期:2017-06-01
  • 通信作者: 曲乐丰
  • 基金资助:
    上海市科技人才计划(15YF1400500)

Effect and mechanism of mesenchymal stem cells for aortic aneurysm

Junlin Yang1, Lefeng Qu1,()   

  1. 1. Department of Vascular Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
  • Received:2017-02-14 Published:2017-06-01
  • Corresponding author: Lefeng Qu
  • About author:
    Corresponding author:Qu Lefeng, Email:
引用本文:

杨俊林, 曲乐丰. 间充质干细胞治疗主动脉瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(03): 173-177.

Junlin Yang, Lefeng Qu. Effect and mechanism of mesenchymal stem cells for aortic aneurysm[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(03): 173-177.

主动脉瘤(AA)是严重危害人类健康的心血管系统疾病,一旦破裂出血,死亡率极高。目前AA的治疗主要通过手术干预,但开放手术风险很大;介入治疗虽然创伤较小,但也存在诸多局限性,如解剖结构的限制、远期管理等。因此,有必要探索新方法在早期进行干预。目前认为,AA的发病主要是由于主动脉壁细胞外基质(ECM)合成和降解失衡。慢性炎症能直接或间接地促进该降解过程,是AA形成的重要因素。间充质干细胞(MSC)具有抗炎和免疫抑制的特性,还能特异性地募集到损伤部位,在治疗AA中表现出独特的优势。本文就MSC治疗AA的机制做一综述。

Aortic aneurysm (AA) is a severe cardiovascular disease endangering human health and has an extremely high mortality rate when rupture occurs. Current treatment for AA is mainly through surgery. However, the risk of open surgery is high. While endovascular treatment is minimally invasive, its use limited due to anatomical complexity and long-term management. Therefore, it is necessary to explore new methods for early interventions. Generally, AA is due to the imbalance of extracellular matrix (ECM) synthesis and degradation in aortic wall. Chronic inflammation especially atherosclerosis can directly or indirectly promote the degradation process, which is an important factor in the pathogenesis of AA. Mesenchymal stem cells (MSC) have anti-inflammatory, immunosuppressive properties and homing capacity, ie, migrating to the site of injury, showing unique advantages for AA treatment. This review is about the mechanism of MSC as a treatment for AA.

1
SVN Task Force for Clinical Practice Guideline. 2009 clinical practice guideline for patients undergoing endovascular repair of abdominal aortic aneurysms (AAA)[J]. J Vasc Nurs, 2009, 27(2):48-63.
2
Nordon IM, Hinchliffe RJ, Loftus IM, et al. Pathophysiology and epidemiology of abdominal aortic aneurysms[J]. Nat Rev Cardiol, 2011, 8(2):92-102.
3
Kochanek KD, Xu J, Murphy SL, et al. Deaths: final data for 2009[J]. Natl Vital Stat Rep, 2011, 60(3):1-116.
4
Aoki H, Yoshimura K, Matsuzaki M. Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy[J]. J Mol Med (Berl), 2007, 85(10):1077-1088.
5
Englund R, Hudson P, Hanel K, et al. Expansion rates of small abdominal aortic aneurysms[J]. Aust N Z J Surg, 1998, 68(1):21-24.
6
Pearce WH, Shively VP. Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs[J]. Ann N Y Acad Sci, 2006, 1085:117-132.
7
Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: basic mechanisms and clinical implications[J]. Curr Probl Surg, 2002, 39(2):110-230.
8
Uitto J, Christiano AM, Kähäri VM, et al. Molecular biology and pathology of human elastin[J]. Biochem Soc Trans, 1991, 19(4):824-829.
9
Liu JM, Davidson JM. The elastogenic effect of recombinant transforming growth factor-beta on porcine aortic smooth muscle cells[J]. Biochem Biophys Res Commun, 1988, 154(3):895-901.
10
Foster J, Rich CB, Florini JR. Insulin-like growth factor I, somatomedin C, induces the synthesis of tropoelastin in aortic tissue[J]. Coll Relat Res, 1987, 7(3):161-169.
11
Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages[J]. J Clin Invest, 1995, 96(1):318-326.
12
Palombo D, Maione M, Cifiello BI, et al. Matrix metalloproteinases. Their role in degenerative chronic diseases of abdominal aorta[J]. J Cardiovasc Surg(Torino), 1999, 40(2):257-260.
13
Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease[J]. Biochem Pharmacol, 2009, 78(6):539-552.
14
Juvonen J, Surcel HM, Satta J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 1997, 17(11):2843-2847.
15
Middleton RK, Lloyd GM, Bown MJ, et al. The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study[J]. J Vasc Surg, 2007, 45(3):574-580.
16
Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease[J]. Circ Res, 2004, 95(9):858-866.
17
Huffman MD, Curci JA, Moore G, et al. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms[J]. Surgery, 2000, 128(3):429-438.
18
Von Wnuck Lipinski K, Keul P, Lucke S, et al. Degraded collagen induces calpain-mediated apoptosis and destruction of the X-chromosome-linked inhibitor of apoptosis (xIAP) in human vascular smooth muscle cells[J]. Cardiovasc Res, 2006, 69(3):697-705.
19
Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro[J]. Circ Res, 2000, 86(12):1259-1265.
20
Hashizume R, Yamawaki-Ogata A, Ueda Y, et al. Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice[J]. J Vasc Surg, 2011, 54(6):1743-1752.
21
Hsiao ST, Lokmic Z, Peshavariya H, et al. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells[J]. Stem Cells Dev, 2013, 22(10):1614-1623.
22
Fan J, Li X, Yan YW, et al. Curcumin attenuates rat thoracic aortic aneurysm formation by inhibition of the c-Jun N-terminal kinase pathway and apoptosis[J]. Nutrition, 2012, 28(10):1068-1074.
23
Xiong F, Zhao J, Zeng G, et al. Inhibition of AAA in a rat model by treatment with ACEI perindopril[J]. J Surg Res, 2014, 189(1):166-173.
24
Liao S, Miralles M, Kelley BJ, et al. Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors[J]. J Vasc Surg, 2001, 33(5):1057-1064.
25
Miyake T, Morishita R. Pharmacological treatment of abdominal aortic aneurysm[J]. Cardiovasc Res, 2009, 83(3):436-443.
26
Schouten O, Van Laanen JH, Boersma E, et al. Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth[J]. Eur J Vasc Endovasc Surg, 2006, 32(1):21-26.
27
Hackam DG, Thiruchelvam D, Redelmeier DA. Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study[J]. Lancet, 2006, 368(9536):659-665.
28
Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms[J]. J Clin Invest, 2000, 105(11):1641-1649.
29
Walton LJ, Franklin IJ, Bayston T, et al. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms:implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms[J]. Circulation, 1999, 100(1):48-54.
30
Yoshimura K, Aoki H, Ikeda Y, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase[J]. Nat Med, 2005, 11(12):1330-1338.
31
Long MY, Li HH, Pen XZ, et al. Expression of chemokine receptor-4 in bone marrow mesenchymal stem cells on experimental rat abdominal aortic aneurysms and the migration of bone marrow mesenchymal stem cells with stromal-derived factor-1[J]. Kaohsiung J Med Sci, 2014, 30(5):224-228.
32
Yamawaki-Ogata A, Fu X, Hashizume R, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model[J]. Eur J Cardiothorac Surg, 2014, 45(5):e156-e165.
33
Kingham PJ, Kolar MK, Novikova LN, et al. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair[J]. Stem Cells Dev, 2014, 23(7):741-754.
34
François M, Romieu-Mourez R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation[J]. Mol Ther, 2012, 20(1):187-195.
35
Davis TA, Anam K, Lazdun Y, et al. Adipose-derived stromal cells promote allograft tolerance induction[J]. Stem Cells Transl Med, 2014, 3(12):1444-1450.
36
Cho DI, Kim MR, Jeong HY, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages[J]. Exp Mol Med, 2014, 46:e70.
37
Abumaree MH, Al Jumah MA, Kalionis B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages[J]. Stem Cell Rev, 2013, 9(5):620-641.
38
Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[J]. PLoS One, 2008, 3(4):e1886.
39
Mendez JJ, G haedi M, Sivarapatna A, et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo[J]. Biomaterials, 2015, 40:61-71.
40
Meng X, Yang J, Zhang K, et al. Regulatory T cells prevent angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E knockout mice[J]. Hypertension, 2014, 64(4):875-882.
41
Allaire E, Muscatelli-Groux B, Guinault AM, et al. Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis[J]. Ann Surg, 2004, 239(3):417-427.
42
Allaire E, Muscatelli-Groux B, Mandet C, et al. Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation[J]. J Vasc Surg, 2002, 36(5):1018-1026.
43
Allaire E, Dai J, Schneider F, et al. Local endovascular treatment of aortic aneurysms. From operating theater to lab bench.[J]. Arch Mal Coeur Vaiss, 2004, 97(9):894-898.
44
Bekhite MM, Finkensieper A, Rebhan J, et al. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells[J]. Stem Cells Dev, 2014, 23(4):333-351.
45
Marra KG, Brayfield CA, Rubin JP. Adipose stem cell differentiation into smooth muscle cells[J]. Methods Mol Biol, 2011, 702:261-268.
46
Wang C, Yin S, Cen L, et al. Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-beta1 and bone morphogenetic protein-4[J]. Tissue Eng Part A, 2010, 16(4):1201-1213.
47
Curci JA. Digging in the"soil"of the aorta to understand the growth of abdominal aortic aneurysms[J]. Vascular, 2009, 17(Suppl 1):S21-29.
48
Schneider F, Saucy F, De Blic R, et al. Bone marrow mesenchymal stem cells stabilize already-formed aortic aneurysms more efficiently than vascular smooth muscle cells in a rat model[J]. Eur J Vasc Endovasc Surg, 2013, 45(6):666-672.
49
Tian X, Fan J, Yu M, et al. Adipose stem cells promote smooth muscle cells to secrete elastin in rat abdominal aortic aneurysm[J]. PLoS One, 2014, 9(9):e108105.
50
Park HS, Choi GH, Hahn S, et al. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms[J]. Biochem Biophys Res Commun, 2013, 431(2):326-331.
51
Turnbull IC, Hadri L, Rapti K, et al. Aortic implantation of mesenchymal stem cells after aneurysm injury in a porcine model[J]. J Surg Res, 2011, 170(1):e179-e188.
52
Riera Del Moral L, Largo C, Ramirez JR, et al. Potential of mesenchymal stem cell in stabilization of abdominal aortic aneurysm sac[J]. J Surg Res, 2015, 195(1):325-333.
53
Colazzo F, Sarathchandra P, Smolenski RT, et al. Extracellular matrix production by adipose-derived stem cells: implications for heart valve tissue engineering[J]. Biomaterials, 2011, 32(1):119-127.
54
Chaterji S, Kim P, Choe SH, et al. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function[J]. Tissue Eng Part A, 2014, 20(15/16):2115-2126.
55
Stegemann JP, Nerem RM. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two-and three-dimensional culture[J]. Exp Cell Res, 2003, 283(2):146-155.
56
Hamati HF, Britton EL, Carey DJ. Inhibition of proteoglycan synthesis alters extracellular matrix deposition, proliferation, and cytoskeletal organization of rat aortic smooth muscle cells in culture[J]. J Cell Biol, 1989, 108(6):2495-2505.
57
Swaminathan G, Gadepalli VS, Stoilov I, et al. Pro-elastogenic effects of bone marrow mesenchymal stem cell-derived smooth muscle cells on cultured aneurysmal smooth muscle cells[J], J Tissue Eng Regen Med, 2014, doi:10.1002/term.1964. [Epub ahead of print].
58
Mushtaq M, Difede DL, Golpanian S, et al. Rationale and design of the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy(the POSEIDON-DCM study):a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy[J]. J Cardiovasc Transl Res, 2014, 7(9):769-780.
59
Heldman AW, Difede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial[J]. JAMA, 2014, 311(1):62-73.
60
Karantalis V, Difede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function,tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting:The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery(Prometheus)trial[J]. Circ Res, 2014, 114(8):1302-1310.
61
Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics[J]. J Am Coll Cardiol, 2013, 61(23):2329-2338.
62
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome[J]. Biochimie, 2013, 95(12):2196-2211.
63
Timmers L, Lim SK, Hoefer IE, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction[J]. Stem Cell Res, 2011, 6(3):206-214.
64
Timmers L, Lim SK, Arslan F, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium[J]. Stem Cell Res, 2007, 1(2):129-137.
65
Galmiche G, Labat C, Mericskay M, et al. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice[J]. Circ Res, 2013, 112(7):1035-1045.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[3] 姜博庸, 韩长旭. 间充质干细胞外泌体促进软骨再生的潜在机制研究[J]. 中华关节外科杂志(电子版), 2023, 17(01): 44-51.
[4] 凡军, 曹丽萍. 异鼠李素激活p38信号促进鼠间充质干细胞成骨分化[J]. 中华关节外科杂志(电子版), 2021, 15(04): 432-437.
[5] 黄涛, 方红育, 周少怀, 卞峰, 李宏亮, 任敏, 范明宇, 汪平, 谢西茜, 张莹, 黄娅芬, 李静. 外泌体对大鼠骨关节炎软骨细胞凋亡的影响[J]. 中华关节外科杂志(电子版), 2021, 15(04): 423-431.
[6] 曹涛, 陶克. 脂肪间充质干细胞外泌体促进创面血管再生的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 154-158.
[7] 李曼, 朱威, 张海萍. 不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(06): 515-519.
[8] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[9] 陈世远, 余朝文, 高涌, 王孝高, 张克霏. 3D打印、体外开窗、CTA与DSA融合在胸腹主动脉瘤腔内治疗中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(02): 128-128.
[10] 刘德朗, 陈世远. 无症状腹主动脉瘤治疗进展[J]. 中华普通外科学文献(电子版), 2021, 15(05): 391-394.
[11] 孙岩, 王玉涛, 吴学君, 张十一. 腹主动脉瘤腔内治疗术后Ⅱ型内漏的单中心处理经验[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 67-71.
[12] 孙龙, 郝迎学, 王明启. 介入技术结合腔内修复手术治疗复杂腹主动脉瘤26例临床随访分析[J]. 中华普外科手术学杂志(电子版), 2021, 15(04): 464-467.
[13] 李亚, 王军. 妊娠合并主动脉夹层[J]. 中华产科急救电子杂志, 2022, 11(01): 18-22.
[14] 王昕禹, 赵国政, 徐娟, 刘淑萍, 李利. 腹主动脉瘤腔内修复术后内漏与左肾周血肿的超声造影诊断特征[J]. 中华诊断学电子杂志, 2023, 11(04): 239-243.
[15] 刘小伟, 娄江杰, 翁莹政, 唐礼江. 阿司匹林联合替格瑞洛抑制小鼠腹主动脉瘤生长的实验研究[J]. 中华老年病研究电子杂志, 2021, 08(04): 26-32.
阅读次数
全文


摘要