1 |
Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration[J]. Nat Rev Mol Cell Biol, 2014, 15(1):19-33.
|
2 |
Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell[J]. Nature, 2006, 439(772):84-88.
|
3 |
Lawson DA, Xin L, Lukacs RU, et al. Isolation and functional characterization of murine prostate stem cells[J]. Proc Natl Acad Sci U S A, 2007, 104(1):181-186.
|
4 |
Deward AD, Cramer J, Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population[J]. Cell Rep, 2014, 9(2):701-711.
|
5 |
Phesse TJ, Clarke AR. Normal stem cells in cancer prone epithelial tissues[J]. Br J Cancer, 2009, 100(2):221-227.
|
6 |
Ng A, Barker N. Ovary and fimbrial stem cells: biology, niche and cancer origins[J]. Nat Rev Mol Cell Biol, 2015, 16(10):625-638.
|
7 |
Kessler M, Hoffmann K, Brinkmann V, et al. The notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids[J]. Nat Commun, 2015, 6:8989-8999.
|
8 |
Smalley M, Ashworth A. Stem cells and breast cancer: A field in Transit[J]. Nat Rev Cancer, 2003, 3(11):832-844.
|
9 |
Walter D, Lier A, Geiselhart A, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells[J]. Nature, 2015, 520(7548):549-552.
|
10 |
李红,臧隽章,冯振卿,等. 肿瘤细胞与骨髓源性细胞融合对肿瘤转移的影响及机制[J]. 医学研究生学报, 29(6):658-662.
|
11 |
Malanchi I, Peinado H, Kassen D, et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling[J]. Nature, 2008, 452(7187):U12-650.
|
12 |
Jardé T, Kass L, Staples M, et al. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative CellPopulation in Colorectal Cancer[J]. PLoS One, 2015, 10(9):e0138336-e0138351.
|
13 |
Swindall AF, Londoño-Joshi AI, Schultz MJ, et al. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines[J]. Cancer Res, 2013, 73(7):2368-2378.
|
14 |
Chekhun SV, Zadvorny TV, Tymovska YO, et al. CD44+/CD24-markers of cancer stem cells in patients with breast cancer of different molecular subtypes[J]. Exp Oncol, 2015, 37(1):58-63.
|
15 |
Mansour SF, Atwa MM. Clinicopathological significance of CD133 and ALDH1 cancer stem cell marker expression in invasive ductal breast carcinoma[J]. Asian Pac J Cancer Prev, 2015, 16(17):7491-7496.
|
16 |
Heerma van Voss MR, van der Groep P, Bart J, et al. Expression of the stem cell marker ALDH1 in the normal breast of BRCA1 mutation carriers[J]. Breast Cancer Res Treat, 2010, 123(2):611-612.
|
17 |
Guinot A, Oeztuerk-Winder F, Ventura JJ. miR-17-92/p38 alpha dysregulation enhances Wnt signaling and selects Lgr6(+) cancer stem-like cells during lung adenocarcinoma progression[J]. Cancer Res, 2016, 76(13):4012-4022.
|
18 |
Kobayashi I, Takahashi F, Nurwidya F, et al. Oct4 plays a crucial role in the maintenance of gefitinib-resistant lung cancer stem cells[J]. Biochem Biophys Res Commun, 2016, 473(1):125-132.
|
19 |
Li T, Su Y, Mei Y, et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome[J]. Lab Invest, 2010, 90(2):234-244.
|
20 |
Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res, 2005, 65(23):10946-10951.
|
21 |
Hayakawa Y, Ariyama H, Stancikova J, et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche[J]. Cancer Cell, 2015, 28(6):800-814.
|
22 |
Li XB, Yang G, Zhu L, et al. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice[J]. Cell Res, 2016, 26(7):838-849.
|
23 |
Zhang XW, Hua RX, Wang XF, et al. Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer[J]. Oncotarget, 2016, 7(9):9815-9831.
|
24 |
Zhao XZ, Wang F, Hou MX. Expression of stem cell markers nanog and PSCA in gastric cancer and its significance[J]. Oncol Lett, 2016, 11(1, A):442-448.
|
25 |
Snippert HJ, Haegebarth A, Kasper M, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J]. Science, 2010, 327(5971):1385-1389.
|
26 |
Brownell I, Guevara E, Bai CB, et al. Nerve-Derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells[J]. Cell Stem Cell, 2011, 8(5):552-565.
|
27 |
Liu S, Gong Z, Chen M, et al. Lgr5-positive cells are cancer stem cells in skin squamous cell carcinoma[J]. Tumour Biol, 2014, 35(11):11605-11612.
|
28 |
Sabet MN, Rakhshan A, Erfani E, et al. Co-Expression of putative cancer stem cell markers, CD133 and nestin, in skin tumors[J]. Asian Pac J Cancer Prev, 2014, 15(19):8161-8169.
|
29 |
Von Rahden BH, Kircher S, Lazariotou M, et al. LgR5 expression and cancer stem cell hypothesis:Clue to define the true origin of esophageal adenocarcinomas with and without Barrett's esophagus[J]. J Exp Clin Cancer Res, 2011, 30:23-33.
|
30 |
Tomizawa Y, Wu TT, Wang KK. Epithelial mesenchymal transition and cancer stem cells in esophageal adenocarcinoma originating from Barrett's esophagus[J]. Oncol Lett, 2012, 3(5):1059-1063.
|
31 |
Florian MC, Geiger H. Concise review: polarity in stem cells, disease, and aging[J]. Stem Cells, 2010, 28(9):1623-1629.
|
32 |
Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer[J]. Nat Rev Cancer, 2012, 12(1):23-38.
|
33 |
Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology[J]. Nat Rev Mol Cell Biol, 2010, 11(12):849-860.
|
34 |
Cicalese A, Bonizzi G, Pasi CE, et al. The tumor suppressor p53 regulates polarity of Self-Renewing divisions in mammary stem cells[J]. Cell, 2009, 138(6):1083-1095.
|
35 |
Sato T, Van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330):415-418.
|
36 |
Goodell MA, Nguyen H, Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments[J]. Nat Rev Mol Cell Biol, 2015, 16(5):299-309.
|
37 |
Yilmaz ÖH, Katajisto P, Lamming DW, et al. mTORC1 in the paneth cell niche couples intestinal stem-cell function to calorie intake[J]. Nature, 2012, 486(744):490-495.
|
38 |
Beyaz S, Mana MD, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature, 2016, 531(7592):53-58.
|
39 |
Liu KC, Jiang M, Lu Y, et al. Sox2 cooperates with Inflammation-Mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells[J]. Cell Stem Cell, 2013, 12(3):304-315.
|
40 |
Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer[J]. Nat Rev Cancer, 2012, 12(3):170-180.
|
41 |
Ayyaz A, Jasper H. Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster[J]. Front Cell Infect Microbiol, 2013, 3:98-105.
|
42 |
Waldner MJ, Foersch S, Neurath MF. Interleukin-6-A key regulator of colorectal cancer development[J]. Int J Biol Sci, 2012, 8(9):1248-1253.
|
43 |
Grachtchouk M, Rong M, Yu S, et al. Basal cell carcinomas in mice overexpressing Gli2 in skin[J]. Nat Genet, 2000, 24(3):216-217.
|
44 |
Youssef KK, Van Keymeulen A, Lapouge G, et al. Identification of the cell lineage at the origin of basal cell carcinoma[J]. Nat Cell Biol, 2010, 12(3):299-U111.
|
45 |
Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors[J]. Proc Natl Acad Sci U S A, 2011, 108(10):4093-4098.
|
46 |
Cordero JB, Stefanatos RK, Scopelliti A, et al. Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila[J]. EMBO J, 2012, 31(19):3901-3917.
|
47 |
Thenappan A, Li Y, Shetty K, et al. New therapeutics targeting colon cancer stem cells[J]. Curr Colorectal Cancer Rep, 2009, 5(4):209-220.
|
48 |
Barker N, Ridgway RA, Van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer[J]. Nature, 2009, 457(7229):608-U119.
|
49 |
Van Der Heijden M, Zimberlin CD, Nicholson AM, et al. Bcl-2 is a critical mediator of intestinal transformation[J]. Nat Commun, 2016, 7:10916-10926.
|
50 |
Scheel C, Eaton EN, Li SH, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast[J]. Cell, 2011, 145(6):926-940.
|
51 |
Zhang D, Park D, Zhong Y, et al. Stem cell and neurogenic gene-expression profiles Link prostate basal cells to aggressive prostate cancer[J]. Nat Commun, 2016,7:10798-10812.
|
52 |
Chang CJ, Chao CH, Xia WY, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs[J]. Nat Cell Biol, 2011, 13(3):317-U296.
|
53 |
Decastro AJ, Dunphy KA, Hutchinson J, et al. MiR203 mediates subversion of stem cell properties during mammary epithelial differentiation via repression of DeltaNP63alpha and promotes mesenchymal-to-epithelial transition[J]. Cell Death Dis, 2013,4:e514-e523.
|
54 |
刁竞芳,莫嘉强,赵祥, 等. miR-30a-5p对人肝癌干细胞增殖和凋亡的影响[J]. 中华细胞与干细胞杂志(电子版), 2016, 6(1):31-35.
|
55 |
刁竞芳,莫嘉强,赵祥, 等. miR-30a-5p对CD133+ Huh7人肝癌干细胞侵袭和迁移能力的影响[J]. 中华细胞与干细胞杂志(电子版), 2016, 6(3):167-173.
|
56 |
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions[J]. Nat Rev Cancer, 2008, 8(10):755-768.
|
57 |
Strauss R, Sova P, Liu Y, et al. Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses[J]. Cancer Res, 2009, 69(12):5115-5125.
|
58 |
Marhaba R, Klingbeil P, Nuebel T, et al. CD44 and EpCAM: Cancer-Initiating cell markers[J]. Curr Mol Med, 2008, 8(8):784-804.
|
59 |
Yin G, Alvero AB, Craveiro V, et al. Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential[J]. Oncogene, 2013, 32(1):39-49.
|
60 |
Grun D, Adhikary G, Eckert RL. VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors[J]. Oncogene, 2016, 35(33):4379-4387.
|
61 |
彭穗,王晶,彭振维, 等. 携带缺氧诱导因子-1α-siRNA的叶酸靶向化的磁性纳米复合物抑制肝癌干细胞增殖的实验研究[J]. 中华细胞与干细胞杂志(电子版), 2016, 6(1):42-46.
|
62 |
Oskarsson T, Essers MA, Dubois N, et al. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene[J]. Genes Dev, 2006, 20(15):2024-2029.
|
63 |
Muncan V, Sansom OJ, Tertoolen L, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc[J]. Mol Cell Biol, 2006, 26(22):8418-8426.
|