1 |
Sahni V, Kessler JA. Stem cell therapies for spinal cord injury[J]. Nat Rev Neurol, 2010, 6(7):363-372.
|
2 |
Park S, Suryaprakash S, Lao H, et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery[J]. Methods, 2015, 84(2015):3-16.
|
3 |
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?[J]. Stem Cell Res Ther, 2016, 7(1):53.
|
4 |
Murphy L, Mcdevitt C, Engler J. Materials as stem cell regulators[J]. Nat Mater, 2014, 13(6):547-557.
|
5 |
Lutolf P, Gilbert M, Blau M. Designing materials to direct stem-cell fate[J]. Nature, 2009, 462(7272):433-441.
|
6 |
Yao S, Liu X, Yu S, et al. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth[J]. Nanoscale, 2016, 8(19):10252-10265.
|
7 |
Aviss KJ, Gough JE, Downes S. Aligned electrospun polymer fibers for skeletal muscle regeneration[J]. Eur Cells Mater, 2010, 19(1):193-204.
|
8 |
Cho I, Choi S, Jeong Y, et al. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells[J]. Acta Biomater, 2010, 6(12):4725-4733.
|
9 |
Berns J, Sur S, Pan L, et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels[J]. Biomaterials, 2014, 35(1):185-195.
|
10 |
Peng R, Yao X, Cao B, et al. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces[J]. Biomaterials, 2012, 33(26):6008-6019.
|
11 |
Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion[J]. Biomaterials, 2011, 32(32):8048-8057.
|
12 |
Yao X, Peng R, Ding J. Effects of aspect ratios of stem cells on lineage commitments with and without induction media[J]. Biomaterials, 2013, 34(4):930-939.
|
13 |
Nair M, Elizabeth E. Applications of Titania nanotubes in bone biology[J]. J Nanosci Nanotechnol, 2015, 15(2):939-955.
|
14 |
Von Der Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix[J]. Cell Tissue Res, 2010, 339(1):131-153.
|
15 |
Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proc Natl Acad Sci U S A, 2009, 106(7):2130-2135.
|
16 |
Pittrof A, Park J, Bauer S, et al. ECM spreading behaviour on micropatterned TiO2 nanotube surfaces[J]. Acta Biomater, 2012, 8(7):2639-2647.
|
17 |
Reilly C, Engler J. Intrinsic extracellular matrix properties regulate stem cell differentiation[J]. J Biomech, 2010, 43(1):55-62.
|
18 |
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4):677-689.
|
19 |
Park S, Chu S, Tsou D, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16):3921-3930.
|
20 |
Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate[J]. Nat Mater, 2010, 9(6):518-526.
|
21 |
Parekh H, Chatterjee K, Sheng LG, et al. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is Independent of myosin-based cytoskeletal tension[J]. Biomaterials, 2011, 32(9):2256-2264.
|
22 |
Steward J, Wagner R, Kelly J. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure[J]. Eur Cell Mater, 2013, 25(1):167-178.
|
23 |
Huebsch N, Lippens E, Lee K, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation[J]. Nat Mater, 2015, 14(12):1269-1277.
|
24 |
Engler J, Sweeney L, Discher E, et al. Extracellular matrix elasticity directs stem cell differentiation[J]. J Musculoskelet Neuronal Interact, 2007, 7(4):335.
|
25 |
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage[J]. Biotechnol Bioeng, 2016, 113(8):1814-1824.
|
26 |
Huang Y, Hagar L, Frost E, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells[J]. Stem Cells, 2004, 22(3):313-323.
|
27 |
Haudenschild K, Hsieh H, Kapila Sunil, et al. Pressure and distortion regulate human mesenchymal stem cell gene expression[J]. Ann Biomed Eng, 2009, 37(3):492-502.
|
28 |
Ward J, Salasznyk RM, Klees RF, et al. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway[J]. Stem Cells Dev, 2007, 16(3):467-479.
|
29 |
Rui F, Lui P, Ni M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells[J]. J Orthop Res, 2011, 29(3):390-396.
|
30 |
Steward J, Kelly J. Mechanical regulation of mesenchymal stem cell differentiation[J]. J Anat, 2015, 227(6):717-731.
|
31 |
Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction[J]. Circ Res, 2008, 102(11):1307-1318.
|
32 |
Haase K, Macadangdang JK, Edrington CH, et al. Extracellular forces cause the nucleus to deform in a highly controlled anisotropic manner[J]. Sci Rep, 2016, 6:21300.
|
33 |
Creecy M, O'neill F, Arulanandam P, et al. Mesenchymal stem cell osteodifferentiation in response to alternating electric current[J]. Tissue Eng Part A, 2013, 19(3/4):467-474.
|
34 |
Guo W, Zhang X, Yu X, et al. Self-Powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on Graphene-Poly(3,4-ethylenedioxythiophene) hybrid microfibers[J]. ACS Nano, 2016, 10(5):5086-5095.
|
35 |
Du L, Fan H, Miao H, et al. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells[J]. Bioelectromagnetics, 2014, 35(7):519-530.
|
36 |
Kim EC, Leesungbok R, Lee SW, et al. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells[J]. Bioelectromagnetics, 2015, 36(4):267-276.
|