切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 107 -111. doi: 10.3877/cma.j.issn.2095-1221.2017.02.008

所属专题: 文献

综述

物理信号调控间充质干细胞行为的研究进展
姚生莲1, 王秀梅2,(), 王鲁宁3   
  1. 1. 100083 北京科技大学材料科学与工程学院;100084 北京,清华大学材料科学与工程学院
    2. 100084 北京,清华大学材料科学与工程学院
    3. 100083 北京科技大学材料科学与工程学院
  • 收稿日期:2016-09-25 出版日期:2017-04-01
  • 通信作者: 王秀梅

A review of mesenchymal stem cells behavior regulated by physical cues

Shenglian Yao1, Xiumei Wang2,(), Luning Wang3   

  1. 1. School of Materials Science and Engineering, University of Science and technology Beijing, Beijing 100083, China; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    3. School of Materials Science and Engineering, University of Science and technology Beijing, Beijing 100083, China
  • Received:2016-09-25 Published:2017-04-01
  • Corresponding author: Xiumei Wang
  • About author:
    Corresponding author:Wang Xiumei, Email:
引用本文:

姚生莲, 王秀梅, 王鲁宁. 物理信号调控间充质干细胞行为的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(02): 107-111.

Shenglian Yao, Xiumei Wang, Luning Wang. A review of mesenchymal stem cells behavior regulated by physical cues[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(02): 107-111.

间充质干细胞由于其多能分化性、易于获取、致瘤风险低和伦理争议少等特点已经成为组织工程和再生医学研究理想的细胞来源。但是在干细胞治疗和组织再生修复过程中,干细胞的使用仍然存在着诸多问题,例如干细胞在体内的迁移和分化等行为的不确定性为干细胞的应用带来了一定的风险。近年来,设计生物材料调控干细胞行为命运受到了越来越广泛的认可和关注。通过生物材料的参数设计实现生物物理和生物化学信号的可控递送,达到调控干细胞行为和生理功能的目的,为干细胞的应用提供了理论基础。本综述将重点介绍各类生物物理信号如拓扑结构、力学信号以及电信号等对干细胞的调控作用及相关机理,为干细胞的应用以及生物材料的设计提供重要思路。

Mesenchymal stem cells (MSCs) have become an ideal cells source for the tissue engineering and regenerative medicine, because of their multipotency, easy access, no tumorogenesis risk and no ethical controversy. There are many problems in the process of stem cells therapy and tissue regeneration, such as the uncertain behavior of stem cell migration and differentiation in vivo. In recent years, more attention has been paid in designing biomaterials to regulate stem cells fate. The parameters of biomaterials can be designed to deliver biophysical and biochemical cues and regulate stem cells behavior and physiological function. This review will focus on the function and mechanism of stem cells regulated by various biophysical cues such as topography, mechanical and electric cues.

1
Sahni V, Kessler JA. Stem cell therapies for spinal cord injury[J]. Nat Rev Neurol, 2010, 6(7):363-372.
2
Park S, Suryaprakash S, Lao H, et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery[J]. Methods, 2015, 84(2015):3-16.
3
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?[J]. Stem Cell Res Ther, 2016, 7(1):53.
4
Murphy L, Mcdevitt C, Engler J. Materials as stem cell regulators[J]. Nat Mater, 2014, 13(6):547-557.
5
Lutolf P, Gilbert M, Blau M. Designing materials to direct stem-cell fate[J]. Nature, 2009, 462(7272):433-441.
6
Yao S, Liu X, Yu S, et al. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth[J]. Nanoscale, 2016, 8(19):10252-10265.
7
Aviss KJ, Gough JE, Downes S. Aligned electrospun polymer fibers for skeletal muscle regeneration[J]. Eur Cells Mater, 2010, 19(1):193-204.
8
Cho I, Choi S, Jeong Y, et al. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells[J]. Acta Biomater, 2010, 6(12):4725-4733.
9
Berns J, Sur S, Pan L, et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels[J]. Biomaterials, 2014, 35(1):185-195.
10
Peng R, Yao X, Cao B, et al. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces[J]. Biomaterials, 2012, 33(26):6008-6019.
11
Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion[J]. Biomaterials, 2011, 32(32):8048-8057.
12
Yao X, Peng R, Ding J. Effects of aspect ratios of stem cells on lineage commitments with and without induction media[J]. Biomaterials, 2013, 34(4):930-939.
13
Nair M, Elizabeth E. Applications of Titania nanotubes in bone biology[J]. J Nanosci Nanotechnol, 2015, 15(2):939-955.
14
Von Der Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix[J]. Cell Tissue Res, 2010, 339(1):131-153.
15
Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proc Natl Acad Sci U S A, 2009, 106(7):2130-2135.
16
Pittrof A, Park J, Bauer S, et al. ECM spreading behaviour on micropatterned TiO2 nanotube surfaces[J]. Acta Biomater, 2012, 8(7):2639-2647.
17
Reilly C, Engler J. Intrinsic extracellular matrix properties regulate stem cell differentiation[J]. J Biomech, 2010, 43(1):55-62.
18
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4):677-689.
19
Park S, Chu S, Tsou D, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16):3921-3930.
20
Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate[J]. Nat Mater, 2010, 9(6):518-526.
21
Parekh H, Chatterjee K, Sheng LG, et al. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is Independent of myosin-based cytoskeletal tension[J]. Biomaterials, 2011, 32(9):2256-2264.
22
Steward J, Wagner R, Kelly J. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure[J]. Eur Cell Mater, 2013, 25(1):167-178.
23
Huebsch N, Lippens E, Lee K, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation[J]. Nat Mater, 2015, 14(12):1269-1277.
24
Engler J, Sweeney L, Discher E, et al. Extracellular matrix elasticity directs stem cell differentiation[J]. J Musculoskelet Neuronal Interact, 2007, 7(4):335.
25
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage[J]. Biotechnol Bioeng, 2016, 113(8):1814-1824.
26
Huang Y, Hagar L, Frost E, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells[J]. Stem Cells, 2004, 22(3):313-323.
27
Haudenschild K, Hsieh H, Kapila Sunil, et al. Pressure and distortion regulate human mesenchymal stem cell gene expression[J]. Ann Biomed Eng, 2009, 37(3):492-502.
28
Ward J, Salasznyk RM, Klees RF, et al. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway[J]. Stem Cells Dev, 2007, 16(3):467-479.
29
Rui F, Lui P, Ni M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells[J]. J Orthop Res, 2011, 29(3):390-396.
30
Steward J, Kelly J. Mechanical regulation of mesenchymal stem cell differentiation[J]. J Anat, 2015, 227(6):717-731.
31
Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction[J]. Circ Res, 2008, 102(11):1307-1318.
32
Haase K, Macadangdang JK, Edrington CH, et al. Extracellular forces cause the nucleus to deform in a highly controlled anisotropic manner[J]. Sci Rep, 2016, 6:21300.
33
Creecy M, O'neill F, Arulanandam P, et al. Mesenchymal stem cell osteodifferentiation in response to alternating electric current[J]. Tissue Eng Part A, 2013, 19(3/4):467-474.
34
Guo W, Zhang X, Yu X, et al. Self-Powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on Graphene-Poly(3,4-ethylenedioxythiophene) hybrid microfibers[J]. ACS Nano, 2016, 10(5):5086-5095.
35
Du L, Fan H, Miao H, et al. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells[J]. Bioelectromagnetics, 2014, 35(7):519-530.
36
Kim EC, Leesungbok R, Lee SW, et al. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells[J]. Bioelectromagnetics, 2015, 36(4):267-276.
[1] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[4] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[5] 占一姗, 朱友荣, 张守华, 陶强. 急性阑尾炎相关诊断预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(02): 151-154.
[6] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[7] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[8] 梁兴森, 高彦平, 李嘉, 李玲, 郑小飞, 王华军. 针灸抗衰老在骨科相关退行性疾病的研究现状[J]. 中华针灸电子杂志, 2023, 12(02): 62-66.
[9] 潘丽佳, 潘茹芳, 李青敏, 张晓琪, 贾春生. 艾灸辅助治疗恶性肿瘤的临床研究进展[J]. 中华针灸电子杂志, 2023, 12(01): 24-26.
[10] 史亚东, 顾建平. 无症状肺栓塞的诊断与治疗进展[J]. 中华介入放射学电子杂志, 2023, 11(02): 155-158.
[11] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[12] 陈静, 逯艳艳, 徐耀东, 马颖才. 联动成像技术在肠道病变中的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(03): 195-199.
[13] 王擎, 王冠峰, 陈星. 胃食管阀瓣的Hill分级在胃食管反流病中的应用价值[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 125-130.
[14] 桑素娟, 王盈盈, 李丽楠, 刘晓冰, 雷燕妮, 程艳爽. 胃管抽吸物pH测试法用于胃管位置定位的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 131-135.
[15] 买买提·依斯热依力, 尹强, 尹海龙, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 传统医药治疗胃食管反流病的研究进展[J]. 中华胃食管反流病电子杂志, 2023, 10(02): 100-104.
阅读次数
全文


摘要