切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 107 -111. doi: 10.3877/cma.j.issn.2095-1221.2017.02.008

所属专题: 文献

综述

物理信号调控间充质干细胞行为的研究进展
姚生莲1, 王秀梅2,(), 王鲁宁3   
  1. 1. 100083 北京科技大学材料科学与工程学院;100084 北京,清华大学材料科学与工程学院
    2. 100084 北京,清华大学材料科学与工程学院
    3. 100083 北京科技大学材料科学与工程学院
  • 收稿日期:2016-09-25 出版日期:2017-04-01
  • 通信作者: 王秀梅

A review of mesenchymal stem cells behavior regulated by physical cues

Shenglian Yao1, Xiumei Wang2,(), Luning Wang3   

  1. 1. School of Materials Science and Engineering, University of Science and technology Beijing, Beijing 100083, China; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    3. School of Materials Science and Engineering, University of Science and technology Beijing, Beijing 100083, China
  • Received:2016-09-25 Published:2017-04-01
  • Corresponding author: Xiumei Wang
  • About author:
    Corresponding author:Wang Xiumei, Email:
引用本文:

姚生莲, 王秀梅, 王鲁宁. 物理信号调控间充质干细胞行为的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(02): 107-111.

Shenglian Yao, Xiumei Wang, Luning Wang. A review of mesenchymal stem cells behavior regulated by physical cues[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(02): 107-111.

间充质干细胞由于其多能分化性、易于获取、致瘤风险低和伦理争议少等特点已经成为组织工程和再生医学研究理想的细胞来源。但是在干细胞治疗和组织再生修复过程中,干细胞的使用仍然存在着诸多问题,例如干细胞在体内的迁移和分化等行为的不确定性为干细胞的应用带来了一定的风险。近年来,设计生物材料调控干细胞行为命运受到了越来越广泛的认可和关注。通过生物材料的参数设计实现生物物理和生物化学信号的可控递送,达到调控干细胞行为和生理功能的目的,为干细胞的应用提供了理论基础。本综述将重点介绍各类生物物理信号如拓扑结构、力学信号以及电信号等对干细胞的调控作用及相关机理,为干细胞的应用以及生物材料的设计提供重要思路。

Mesenchymal stem cells (MSCs) have become an ideal cells source for the tissue engineering and regenerative medicine, because of their multipotency, easy access, no tumorogenesis risk and no ethical controversy. There are many problems in the process of stem cells therapy and tissue regeneration, such as the uncertain behavior of stem cell migration and differentiation in vivo. In recent years, more attention has been paid in designing biomaterials to regulate stem cells fate. The parameters of biomaterials can be designed to deliver biophysical and biochemical cues and regulate stem cells behavior and physiological function. This review will focus on the function and mechanism of stem cells regulated by various biophysical cues such as topography, mechanical and electric cues.

1
Sahni V, Kessler JA. Stem cell therapies for spinal cord injury[J]. Nat Rev Neurol, 2010, 6(7):363-372.
2
Park S, Suryaprakash S, Lao H, et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery[J]. Methods, 2015, 84(2015):3-16.
3
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?[J]. Stem Cell Res Ther, 2016, 7(1):53.
4
Murphy L, Mcdevitt C, Engler J. Materials as stem cell regulators[J]. Nat Mater, 2014, 13(6):547-557.
5
Lutolf P, Gilbert M, Blau M. Designing materials to direct stem-cell fate[J]. Nature, 2009, 462(7272):433-441.
6
Yao S, Liu X, Yu S, et al. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth[J]. Nanoscale, 2016, 8(19):10252-10265.
7
Aviss KJ, Gough JE, Downes S. Aligned electrospun polymer fibers for skeletal muscle regeneration[J]. Eur Cells Mater, 2010, 19(1):193-204.
8
Cho I, Choi S, Jeong Y, et al. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells[J]. Acta Biomater, 2010, 6(12):4725-4733.
9
Berns J, Sur S, Pan L, et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels[J]. Biomaterials, 2014, 35(1):185-195.
10
Peng R, Yao X, Cao B, et al. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces[J]. Biomaterials, 2012, 33(26):6008-6019.
11
Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion[J]. Biomaterials, 2011, 32(32):8048-8057.
12
Yao X, Peng R, Ding J. Effects of aspect ratios of stem cells on lineage commitments with and without induction media[J]. Biomaterials, 2013, 34(4):930-939.
13
Nair M, Elizabeth E. Applications of Titania nanotubes in bone biology[J]. J Nanosci Nanotechnol, 2015, 15(2):939-955.
14
Von Der Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix[J]. Cell Tissue Res, 2010, 339(1):131-153.
15
Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proc Natl Acad Sci U S A, 2009, 106(7):2130-2135.
16
Pittrof A, Park J, Bauer S, et al. ECM spreading behaviour on micropatterned TiO2 nanotube surfaces[J]. Acta Biomater, 2012, 8(7):2639-2647.
17
Reilly C, Engler J. Intrinsic extracellular matrix properties regulate stem cell differentiation[J]. J Biomech, 2010, 43(1):55-62.
18
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4):677-689.
19
Park S, Chu S, Tsou D, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16):3921-3930.
20
Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate[J]. Nat Mater, 2010, 9(6):518-526.
21
Parekh H, Chatterjee K, Sheng LG, et al. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is Independent of myosin-based cytoskeletal tension[J]. Biomaterials, 2011, 32(9):2256-2264.
22
Steward J, Wagner R, Kelly J. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure[J]. Eur Cell Mater, 2013, 25(1):167-178.
23
Huebsch N, Lippens E, Lee K, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation[J]. Nat Mater, 2015, 14(12):1269-1277.
24
Engler J, Sweeney L, Discher E, et al. Extracellular matrix elasticity directs stem cell differentiation[J]. J Musculoskelet Neuronal Interact, 2007, 7(4):335.
25
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage[J]. Biotechnol Bioeng, 2016, 113(8):1814-1824.
26
Huang Y, Hagar L, Frost E, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells[J]. Stem Cells, 2004, 22(3):313-323.
27
Haudenschild K, Hsieh H, Kapila Sunil, et al. Pressure and distortion regulate human mesenchymal stem cell gene expression[J]. Ann Biomed Eng, 2009, 37(3):492-502.
28
Ward J, Salasznyk RM, Klees RF, et al. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway[J]. Stem Cells Dev, 2007, 16(3):467-479.
29
Rui F, Lui P, Ni M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells[J]. J Orthop Res, 2011, 29(3):390-396.
30
Steward J, Kelly J. Mechanical regulation of mesenchymal stem cell differentiation[J]. J Anat, 2015, 227(6):717-731.
31
Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction[J]. Circ Res, 2008, 102(11):1307-1318.
32
Haase K, Macadangdang JK, Edrington CH, et al. Extracellular forces cause the nucleus to deform in a highly controlled anisotropic manner[J]. Sci Rep, 2016, 6:21300.
33
Creecy M, O'neill F, Arulanandam P, et al. Mesenchymal stem cell osteodifferentiation in response to alternating electric current[J]. Tissue Eng Part A, 2013, 19(3/4):467-474.
34
Guo W, Zhang X, Yu X, et al. Self-Powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on Graphene-Poly(3,4-ethylenedioxythiophene) hybrid microfibers[J]. ACS Nano, 2016, 10(5):5086-5095.
35
Du L, Fan H, Miao H, et al. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells[J]. Bioelectromagnetics, 2014, 35(7):519-530.
36
Kim EC, Leesungbok R, Lee SW, et al. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells[J]. Bioelectromagnetics, 2015, 36(4):267-276.
[1] 闫泽辉, 狄靖凯, 郭子瑊, 穆昶江, 张智博, 陈帅, 王泽华, 田最, 向川. 膝关节机械感受器在半月板损伤中的功能[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 524-531.
[2] 田志敏, 何淳诺, 李焕玺, 吴昊越, 刘鹏, 乔永杰, 周胜虎, 蓝平衡, 郭氧, 张浩强. 股骨头坏死动物模型研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 383-389.
[3] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[4] 寇宛婷, 蔡英华, 周海琴, 吴琼. 肺移植术后谵妄影响因素的范围综述[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 251-256.
[5] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 陈利, 王锦海, 董浩男, 李利军. 锁骨钩钢板在肩锁关节脱位治疗中的不足及改良[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 377-381.
[8] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[9] 吴孝琦, 罗飞, 史凡凡, 方青. 移动健康在慢性肌肉骨骼疼痛患者自我管理中的应用进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 251-256.
[10] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[11] 张洪, 杨琪, 罗静, 唐茜, 邓鸿, 巩文艳, 王丽坤, 刘静, 艾双春. 多靶点神经调控技术对卒中后上肢运动功能障碍患者的脑网络功能连接研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 278-284.
[12] 白婧, 李笑冰, 白雅, 慕亚倩, 郭欣, 刘学东. 多系统萎缩的神经调控应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 239-243.
[13] 楚海强, 杨远游, 任刚. 胰腺癌放射治疗联合其他治疗方法的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 392-396.
[14] 周微薇, 罗宇, 何朝晖. 解释消化内镜在职护士培训的现实主义整合[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(04): 276-281.
[15] 赵晨怡, 宁波, 董浩, 冯秀雪, 李惠凯, 柴宁莉, 令狐恩强. 一次性消化治疗内镜的研发进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(02): 116-119.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?