1 |
Brenner MB, Mclean J, Dialynas DP, et al. Identification of a putative second T-cell receptor[J].Nature, 1986, 322(675):145-149.
|
2 |
Van Acker HH, Anguille S, Van Tendeloo VF, et al. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy[J]. Oncoimmunology, 2015, 4(8):e1021538.
|
3 |
Legut M, Cole DK, Sewell AK. The promise of gamma delta T cells and the gamma delta T cell receptor for cancer immunotherapy[J]. Cell Mol Immunol, 2015, 12(6):656-668.
|
4 |
Toia F, Buccheri S, Anfosso A, et al. Skewed differentiation of circulating V gamma 9V delta 2 T lymphocytes in melanoma and impact on clinical outcome[J]. PLoS One, 2016, 11(2):e0149570.
|
5 |
Fowler DW, Bodman-Smith MD. Harnessing the power of Vδ2 cells in cancer immunotherapy[J]. Clin Exp Immunol, 2015, 180(1):1-10.
|
6 |
Sugai S, Yoshikawa T, Iwama T, et al. Hepatocellular carcinoma cell sensitivity to V gamma 9V delta 2 T lym-phocyte-mediated killing is increased by zoledronate[J]. Int J Oncol, 2016, 48(5):1794-1804.
|
7 |
Silva SB, Serre K, Norell H.γδT cells in cancer[J]. Nat Rev Immunol, 2015, 15(11):683-691.
|
8 |
Harly C, PeignéCM, Scotet E. Molecules and mechanisms implicated in the peculiar antigenic activation process of human Vγ9Vδ2 T Cells[J]. Front Immunol, 2015, 5:657.
|
9 |
Decaup E, Duault C, Bezombes C, et al. Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRV gamma 9(+) gamma delta T lymphocytes[J]. Immunol Lett, 2014, 161(1):133-137.
|
10 |
Lanier LL. NKG2D receptor and its ligands in host defense[J]. Cancer Immunol Res, 2015, 3(6):575-582.
|
11 |
Van Acker HH, Anguille S, Willemen Y, et al. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials[J]. Pharmacol Ther, 2016, 158:24-40.
|
12 |
Tyler CJ, Doherty DG, Moser BA. Human V gamma 9/V delta 2 T cells: innate adaptors of the immune system[J]. Cell Immunol, 2015, 296(1):10-21.
|
13 |
Paul S, Lal G. Regulatory and effector functions of gamma-delta (gammadelta) T cells and their therapeutic potential in adoptive cellular therapy for cancer[J]. Int J Cancer, 2016, 139(5):976-985.
|
14 |
Li K, Zhang Q, Zhang Y, et al. T-cell-associated cellular immunotherapy for lung cancer[J]. J Cancer Res Clin Oncol, 2015, 141(7):1249-1258.
|
15 |
Wilhelm M, Smetak M, Schaefer-Eckart K, et al. Successful adoptive transfer and invi-voexpansion of haploidenticalγδT cells[J]. J Transl Med, 2014, 12:45.
|
16 |
Wada I, Matsushita H, Noji S, et al. Intraperitoneal injection ofin vitroexpanded V gamma 9V delta 2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer[J]. Cancer Med, 2014, 3(2):362-375.
|
17 |
Khan MW, Eberl M, Moser B. Potential use ofγδT cell-based vaccines in cancer immunotherapy[J]. Front Immunol, 2014, 5:512.
|
18 |
Bennouna J, Bompas E, Neidhardt EM, et al. Phase-i study of innacell gammadelta,an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes,in combination with il-2, in patients with metastatic renal cell carcinoma[J]. Cancer Immunol Immunother, 2008, 57(11):1599-1609.
|
19 |
Kobayashi H, Tanaka Y, Shimmura HA, et al. Complete remission of lung metastasis following adoptive im-munotherapy using activated autologous gamma delta T-cells in a patient with renal cell carcinoma[J]. Anticancer Res, 2010, 30(2):575-579.
|
20 |
Nakajima J, Murakawa T, Fukami T, et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gamma delta T cells[J]. Eur J Cardiothorac Surg, 2010, 37(5):1191-1197.
|
21 |
Izumi T, Kondo M, Takahashi T, et al.Ex vivocharacterization of gamma delta T-cell repertoire in patients after adoptive transfer of V gamma 9V delta 2 T cells expressing the interleukin-2 receptor beta-chain and the common gamma-chain[J]. Cytotherapy, 2013, 15(4):481-491.
|
22 |
Abe Y, Muto M, Nieda M, et al. Clinical and immunological evaluation of zoledronate-activated V gamma 9 gamma delta T-cell-based immunotherapy for patients with multiple myeloma[J]. Exp Hematol, 2009, 37(8):956-968.
|
23 |
Meraviglia S, Eberl M, Vermijlen D, et al.In vivomanipulation of V gamma 9V delta 2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients[J]. Clin Exp Immunol, 2010, 161(2):290-297.
|
24 |
Kobayashi H, Tanaka Y, Yagi J, et al. Phase I/II study of adoptive transfer ofγδT cells in combination with zoledronic acid and IL-2 to patientswith advanced renal cell carcinoma[J]. Cancer Immunol Immunother, 2011, 60(8):1075-84.
|
25 |
Sakamoto M, Nakajima J, Murakawa T, et al. Adop-tive immunotherapy for advanced non-small cell lung cancer using zoledronate-expandedγδTcells: aphase I clinical study[J]. J Immunother, 2011, 34(2):202-211.
|
26 |
Abe Y, Muto M, Nieda M, et al. Clinical and immunological evaluation of zoledronate-activated Vgamma9gammadelta T-cell-based immunotherapy for patients with multiple myeloma[J]. Exp Hematol, 2009, 37(8):956-968.
|
27 |
Nicol AJ, Tokuyama H, Mattarollo SR, et al. Clinical evaluation of autologous gamma delta T cell-based im-munotherapy for metastatic solid tumours[J]. Br J Cancer, 2011, 105(6):778-786.
|
28 |
Kunzmann V, Smetak M, Kimmel B, et al. Tumor-promoting versus tumor-antagonizing roles ofγδT cells in cancer immunotherapy: results from aprospective phase I/II trial[J]. J Immunother, 2012, 35(2):205-213.
|
29 |
Lang JM, Kaikobad MR, Wallace M, et al. Pi-lot trial of interleukin-2 and zoledronic acid to augmentγδT cells as treatment for patients with refractoryrenal cell carcinoma[J]. Cancer Immunol Immunother, 2011, 60(10):1447-1460.
|
30 |
Kobayashi H, Tanaka Y.γδT cell Immunotherapy-A review[J]. Pharmaceuticals(Basel), 2015, 8(1):40-61.
|
31 |
Coffelt SB, Kersten K, Doornebal CW, et al. IL-17-producingγδT cells and neutrophils conspire to promote breast cancer metastasis[J]. Nature, 2015, 522(7556):345-348.
|
32 |
Zhong FY, Cui DW, Tao H, et al. IL-17A-producing T cells and associated cytokines are involved in the pro-gression of gastric cancer[J].Oncol Rep, 2015, 34(5):2365-2374.
|
33 |
Ribot JC, Ribeiro ST, Correia DV, et al. Hu-manγδthymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells uponIL-2/IL-15 signaling[J]. J Immunol, 2014, 192(5):2237-2243.
|
34 |
Deng X, Terunuma H, Terunuma A, et al.Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo-expandedγδ t cells or αβt cells[J]. Int Immunopharmacol, 2014, 22(2):486-491.
|
35 |
Niu C, Jin HF, Li M, et al.In vitroanalysis of the proliferative capacity and cytotoxic effects ofex vivoinduced natural killer cells, cytokine-induced killer cells, and gamma-delta T cells[J]. BMC Immunol, 2015, 16:61.
|
36 |
Oberg HH, Peipp M, Kellner C, et al. Nov-el bispecific antibodies increaseγδT-cell cytotoxicity against pancreatic cancer cells[J]. Cancer Res, 2014, 74(5):1349-1360.
|
37 |
Oberg HH, Kellner C, Gonnermann D, et al.γδT cell activation by bispecific antibodies[J].Cellular Immunol, 2015, 2961(1):41-49.
|