切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (01) : 54 -58. doi: 10.3877/cma.j.issn.2095-1221.2017.01.010

所属专题: 文献

综述

γδT细胞及其在肿瘤免疫治疗中的研究进展
肖凌1, 张钦1, 陈虎1, 张斌1,()   
  1. 1. 100071 北京,解放军307医院造血干细胞移植科 全军造血干细胞研究所
  • 收稿日期:2016-05-18 出版日期:2017-02-01
  • 通信作者: 张斌
  • 基金资助:
    北京市科技计划课题(Z161100000516184)

Development of gammadelta T cells in tumor immunotherapy

Ling Xiao1, Qin Zhang1, Hu Chen1, Bin Zhang1,()   

  1. 1. Department of Hematopoietic Stem Cell Transplantation, the 307th Hospital of Chinese People's Liberation Army, Beijing 100071, China
  • Received:2016-05-18 Published:2017-02-01
  • Corresponding author: Bin Zhang
  • About author:
    Corresponding author: Zhang Bin, Email:
引用本文:

肖凌, 张钦, 陈虎, 张斌. γδT细胞及其在肿瘤免疫治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(01): 54-58.

Ling Xiao, Qin Zhang, Hu Chen, Bin Zhang. Development of gammadelta T cells in tumor immunotherapy[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(01): 54-58.

γδT细胞是T细胞的一个亚群,其TCR由γ链和δ链组成,为主要组织相容性复合体非限制性细胞。外周血γδT细胞大部分表达TCR Vγ9和Vδ2,能杀伤多种肿瘤细胞。本文将对γδT细胞的免疫学特性包括识别杀伤肿瘤细胞的机制及γδT细胞在肿瘤免疫治疗中的研究作一综述。

Gammadelta T cells are a small subset of T lymphocytes expressingγ-andδ-chain T cell receptors. Gammadelta T cells are main MHC-unrestrictive cells. The majority of human peripheral blood Gammadelta T cells express Vγ9 and Vδ2 T cell receptor and show cytotoxicity against a wide spectrum of tumor cells. Here, we review the immunological properties of gammadelta T cells including the recognition and killing mechanism against tumor cells, and summarize the results of gammadelta T cell-based cancer immunotherapy.

图1 γδT细胞的激活
表1 应用γδT细胞过继输注的临床试验
表2 应用Zoledronate和IL-2体内扩增γδT细胞的治疗方案
1
Brenner MB, Mclean J, Dialynas DP, et al. Identification of a putative second T-cell receptor[J].Nature, 1986, 322(675):145-149.
2
Van Acker HH, Anguille S, Van Tendeloo VF, et al. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy[J]. Oncoimmunology, 2015, 4(8):e1021538.
3
Legut M, Cole DK, Sewell AK. The promise of gamma delta T cells and the gamma delta T cell receptor for cancer immunotherapy[J]. Cell Mol Immunol, 2015, 12(6):656-668.
4
Toia F, Buccheri S, Anfosso A, et al. Skewed differentiation of circulating V gamma 9V delta 2 T lymphocytes in melanoma and impact on clinical outcome[J]. PLoS One, 2016, 11(2):e0149570.
5
Fowler DW, Bodman-Smith MD. Harnessing the power of Vδ2 cells in cancer immunotherapy[J]. Clin Exp Immunol, 2015, 180(1):1-10.
6
Sugai S, Yoshikawa T, Iwama T, et al. Hepatocellular carcinoma cell sensitivity to V gamma 9V delta 2 T lym-phocyte-mediated killing is increased by zoledronate[J]. Int J Oncol, 2016, 48(5):1794-1804.
7
Silva SB, Serre K, Norell H.γδT cells in cancer[J]. Nat Rev Immunol, 2015, 15(11):683-691.
8
Harly C, PeignéCM, Scotet E. Molecules and mechanisms implicated in the peculiar antigenic activation process of human Vγ9Vδ2 T Cells[J]. Front Immunol, 2015, 5:657.
9
Decaup E, Duault C, Bezombes C, et al. Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRV gamma 9(+) gamma delta T lymphocytes[J]. Immunol Lett, 2014, 161(1):133-137.
10
Lanier LL. NKG2D receptor and its ligands in host defense[J]. Cancer Immunol Res, 2015, 3(6):575-582.
11
Van Acker HH, Anguille S, Willemen Y, et al. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials[J]. Pharmacol Ther, 2016, 158:24-40.
12
Tyler CJ, Doherty DG, Moser BA. Human V gamma 9/V delta 2 T cells: innate adaptors of the immune system[J]. Cell Immunol, 2015, 296(1):10-21.
13
Paul S, Lal G. Regulatory and effector functions of gamma-delta (gammadelta) T cells and their therapeutic potential in adoptive cellular therapy for cancer[J]. Int J Cancer, 2016, 139(5):976-985.
14
Li K, Zhang Q, Zhang Y, et al. T-cell-associated cellular immunotherapy for lung cancer[J]. J Cancer Res Clin Oncol, 2015, 141(7):1249-1258.
15
Wilhelm M, Smetak M, Schaefer-Eckart K, et al. Successful adoptive transfer and invi-voexpansion of haploidenticalγδT cells[J]. J Transl Med, 2014, 12:45.
16
Wada I, Matsushita H, Noji S, et al. Intraperitoneal injection ofin vitroexpanded V gamma 9V delta 2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer[J]. Cancer Med, 2014, 3(2):362-375.
17
Khan MW, Eberl M, Moser B. Potential use ofγδT cell-based vaccines in cancer immunotherapy[J]. Front Immunol, 2014, 5:512.
18
Bennouna J, Bompas E, Neidhardt EM, et al. Phase-i study of innacell gammadelta,an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes,in combination with il-2, in patients with metastatic renal cell carcinoma[J]. Cancer Immunol Immunother, 2008, 57(11):1599-1609.
19
Kobayashi H, Tanaka Y, Shimmura HA, et al. Complete remission of lung metastasis following adoptive im-munotherapy using activated autologous gamma delta T-cells in a patient with renal cell carcinoma[J]. Anticancer Res, 2010, 30(2):575-579.
20
Nakajima J, Murakawa T, Fukami T, et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gamma delta T cells[J]. Eur J Cardiothorac Surg, 2010, 37(5):1191-1197.
21
Izumi T, Kondo M, Takahashi T, et al.Ex vivocharacterization of gamma delta T-cell repertoire in patients after adoptive transfer of V gamma 9V delta 2 T cells expressing the interleukin-2 receptor beta-chain and the common gamma-chain[J]. Cytotherapy, 2013, 15(4):481-491.
22
Abe Y, Muto M, Nieda M, et al. Clinical and immunological evaluation of zoledronate-activated V gamma 9 gamma delta T-cell-based immunotherapy for patients with multiple myeloma[J]. Exp Hematol, 2009, 37(8):956-968.
23
Meraviglia S, Eberl M, Vermijlen D, et al.In vivomanipulation of V gamma 9V delta 2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients[J]. Clin Exp Immunol, 2010, 161(2):290-297.
24
Kobayashi H, Tanaka Y, Yagi J, et al. Phase I/II study of adoptive transfer ofγδT cells in combination with zoledronic acid and IL-2 to patientswith advanced renal cell carcinoma[J]. Cancer Immunol Immunother, 2011, 60(8):1075-84.
25
Sakamoto M, Nakajima J, Murakawa T, et al. Adop-tive immunotherapy for advanced non-small cell lung cancer using zoledronate-expandedγδTcells: aphase I clinical study[J]. J Immunother, 2011, 34(2):202-211.
26
Abe Y, Muto M, Nieda M, et al. Clinical and immunological evaluation of zoledronate-activated Vgamma9gammadelta T-cell-based immunotherapy for patients with multiple myeloma[J]. Exp Hematol, 2009, 37(8):956-968.
27
Nicol AJ, Tokuyama H, Mattarollo SR, et al. Clinical evaluation of autologous gamma delta T cell-based im-munotherapy for metastatic solid tumours[J]. Br J Cancer, 2011, 105(6):778-786.
28
Kunzmann V, Smetak M, Kimmel B, et al. Tumor-promoting versus tumor-antagonizing roles ofγδT cells in cancer immunotherapy: results from aprospective phase I/II trial[J]. J Immunother, 2012, 35(2):205-213.
29
Lang JM, Kaikobad MR, Wallace M, et al. Pi-lot trial of interleukin-2 and zoledronic acid to augmentγδT cells as treatment for patients with refractoryrenal cell carcinoma[J]. Cancer Immunol Immunother, 2011, 60(10):1447-1460.
30
Kobayashi H, Tanaka Y.γδT cell Immunotherapy-A review[J]. Pharmaceuticals(Basel), 2015, 8(1):40-61.
31
Coffelt SB, Kersten K, Doornebal CW, et al. IL-17-producingγδT cells and neutrophils conspire to promote breast cancer metastasis[J]. Nature, 2015, 522(7556):345-348.
32
Zhong FY, Cui DW, Tao H, et al. IL-17A-producing T cells and associated cytokines are involved in the pro-gression of gastric cancer[J].Oncol Rep, 2015, 34(5):2365-2374.
33
Ribot JC, Ribeiro ST, Correia DV, et al. Hu-manγδthymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells uponIL-2/IL-15 signaling[J]. J Immunol, 2014, 192(5):2237-2243.
34
Deng X, Terunuma H, Terunuma A, et al.Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo-expandedγδ t cells or αβt cells[J]. Int Immunopharmacol, 2014, 22(2):486-491.
35
Niu C, Jin HF, Li M, et al.In vitroanalysis of the proliferative capacity and cytotoxic effects ofex vivoinduced natural killer cells, cytokine-induced killer cells, and gamma-delta T cells[J]. BMC Immunol, 2015, 16:61.
36
Oberg HH, Peipp M, Kellner C, et al. Nov-el bispecific antibodies increaseγδT-cell cytotoxicity against pancreatic cancer cells[J]. Cancer Res, 2014, 74(5):1349-1360.
37
Oberg HH, Kellner C, Gonnermann D, et al.γδT cell activation by bispecific antibodies[J].Cellular Immunol, 2015, 2961(1):41-49.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[4] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[5] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[6] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[7] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[8] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[9] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[10] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[11] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[12] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[13] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
阅读次数
全文


摘要