切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (01) : 59 -63. doi: 10.3877/cma.j.issn.2095-1221.2017.01.011

所属专题: 文献

综述

糖尿病细胞治疗的研究进展
刘英1, 江霞1,()   
  1. 1. 300192 天津市第一中心医院内分泌科
  • 收稿日期:2016-07-26 出版日期:2017-02-01
  • 通信作者: 江霞

Research progress of diabetes cell therapy

Ying Liu1, Xia Jiang1,()   

  1. 1. Department of Endocrinology, the First Centre Hosipital, Tianjin 300192, China
  • Received:2016-07-26 Published:2017-02-01
  • Corresponding author: Xia Jiang
  • About author:
    Corresponding author: Jiang Xia, Email:
引用本文:

刘英, 江霞. 糖尿病细胞治疗的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(01): 59-63.

Ying Liu, Xia Jiang. Research progress of diabetes cell therapy[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(01): 59-63.

糖尿病细胞治疗能重建胰岛β细胞功能,为治愈糖尿病提供了可能。胰岛移植是一种能够稳定控制血糖并且耐受良好的治疗手段,可有效改善血糖代谢及并发症的发生发展,提高生活质量,但稀缺的胰腺供体和长期免疫排斥治疗引发了多能干细胞的相关性研究,目前已在糖尿病小鼠的基础试验中证实了其具有逆转糖尿病的潜能,然而安全是其致命的弱点。近些年,针对胰腺祖细胞的体外研究显示通过化学方法可以刺激腺泡或α细胞转化为β细胞新生并在不需要移植的情况下改善胰腺功能,规避不良反应。所以,糖尿病细胞治疗是潜能与风险并存的,只有扬长避短,才能为糖尿病治疗提供新的有效的方法。

Diabetes cell therapy can restoreβcell function and provides the possibility to cure diabetes. Islet transplantation can achieve stable blood sugar level and is well tolerated. It also improves blood sugar metabolism, prevent the development of complications, and improve the quality of life. But the scarcity of donor pancreas and the need for long-term immunosuppression make the researchers to seek solution from pluripotent stem cells (PSCs) , which have the potential to reverse diabetes in diabetic mice. However, safety is the Achilles' heel of PSCs. In recent years, pancreatic progenitor cells were shown to stimulate acini cells orαcells to differentiate intoβcells, which can provide a new effective method for diabetes treatment.

1
陈灏珠,林果为.实用内科学[M].第14版.北京:人民卫生出版社, 2013: 976.
2
Bergman M, Buysschaert M, Schwarz PE, et al. Diabetes prevention: global health policy and perspectives from the ground[J]. Diabetes Manag (Lond), 2015, 2(4):309-321.
3
Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation:1999-2010[J]. Diabetes Care, 2012, 35(7):1436-1445.
4
Lunsford KE, Jayanshankar K, Eiring AM, et al. Alloreactive (CD4-Independent) CD8+T cells jeopardize long-term survival of intrahepatic islet allografts[J]. Am J Transplant. 2008 Jun;8(6):1113-1128.
5
Sleater M, Diamond AS, Gill RG. Islet allograft rejection by contact-dependent CD8+T cells:perforin and FasL play alternate but obligatoryroles[J]. Am J Transplant, 2007, 7(8):1927-1933.
6
Zhang L, Hadley GA. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation[J]. Chin Med J, 2010, 123(24):3644-3651.
7
Zhang L, Moffatt-Bruce SD, Gaughan AA, et al. An anti-CDl03 immunotoxin promotes long-term survival of pancreatic islet allografts[J]. Am J Transplant, 2009, 9(9):2012-2023.
8
Ricordi C. Clinical islet transplantation update. in 75th Scientific Sessions of the American Diabetes Association[C]. Boston, USA, 2015.
9
Inverardi L. Improved graft survival in islet transplant recipients treated with G-CSF(filgrastim) and exenatide. in 75th Scientific Sessions of the American Diabetes Association[C]. Boston, USA, 2015.
10
Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation[J]. Nat Biotechnol, 2015, 33(5):518-523.
11
Phelps EA, Headen DM, Taylor WR, et al. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes[J]. Biomaterials, 2013, 34(19):4602-4611.
12
Samikannu B, Chen C, Lingwal N, et al. Dipeptidyl peptidase IV inhibition activates CREB and improves islet vascularization through VEGF-A/VEGFR-2 signaling pathway[J]. PLoS One, 2013, 8(12):e82639.
13
De Groot M, Schuurs TA, Van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts[J]. J Surg Res, 2004, 121(1):141-150.
14
Manning Fox JE, Lyon J, Dai XQ, et al. Human islet function following 20 years of cryogenic biobanking[J]. Diabetologia, 2015, 58(7):1503-1512.
15
Hering BJ, Wijkstrom M, Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3):301-303.
16
Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of Streptozotocin-Induced diabetes in primates up to 6 months without immunosuppression[J]. Transplantation, 2010, 90(10):1054-1062.
17
David KC. Cooper, human-pig xenotransplantation may be a alternatives way on human islet cell transplantation.in 76th Scientific Sessions of the American Diabetes Association[C]. New Orleans, USA, 2016.
18
Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation[J]. Xenotransplantation, 2007, 14(2):157-161.
19
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cellsin vivo[J]. Nat Biotechnol, 2008, 26(4):443-452.
20
D'amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401.
21
Fujikawa T, Oh SH, Pi L, et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells[J]. Am J Pathol, 2005, 166(6):1781-1791.
22
Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells[J]. Cell Cycle, 2009, 8(23):3822-3830.
23
Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice[J]. Diabetes, 2012, 61(8):2016-2029.
24
Bruin JE, Rezania A, Xu J, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice[J]. Diabetologia, 2013, 56(9):1987-1998.
25
Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11):1121-1133.
26
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreaticβcellsin vitro[J]. Cell, 2014, 159(2):428-439.
27
Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture[J]. Cell Stem Cell, 2011, 8(1):106-118.
28
Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67.
29
Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorate hyperglycemia in type 2 diabetic rats:identification of a novel role in improving insulin sensitivity[J]. Diabetes, 2012, 61(6):1616-1625.
30
Czubak P, Bojarska-Junak A, Tabarkiewicz J, et al. A modified method of insulin producing cells' Generation from bone Marrow-Derived mesenchymal stem cells[J]. J Diabetes Res, 2014 :628591.
31
Xie QP, Huang H, Xu B, et al. Human bone marrow mesenchumal stem cells differentiate into insulin-producing cells upon microenvironmental manipulationin vitro[J]. Differentiation, 2009,77(5):483-491.
32
Jiang FX, Morahan G. Pancreatic stem cells remain unresolved[J]. Stem Cells Dev, 2014, 23(23):2803-2812.
33
Shen WJ. Inhibition of DYRK1A and GSK3B induces human beta-cell proliferation[J]. Nat Commun, 2015,6:8372.
34
Toren-Haritan G, Efrat S. TGFβpathway inhibition redifferentiates human pancreatic isletβcells expandedin vitro[J]. PLoS One, 2015, 10(9):e0139168.
35
Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that Express insulin[J]. Cell Stem Cell, 2011, 8(3):281-293.
36
Razavi R, Najafabadi HS, Abdullah S, et al. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more beta-Cell production[J]. Diabetes, 2015, 64(4):1311-1323.
37
Collombat P, Xu XB, Ravassard PA, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells[J]. Cell, 2009, 138(3):449-462.
38
Thorel F, Népote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss[J]. Nature, 2010, 464(7292):1149-1154.
39
Cavelti-Weder C, Shtessel M, Reuss JE, et al. Pancreatic duct ligation after almost completeβ-cell loss: exocrine regeneration but no evidence ofβ-cell regeneration[J]. Endocrinology, 2013, 154(12):4493-4502.
40
Chera S, Baronnier D, Ghila L, et al. Diabetes recovery by age-dependent conversion of pancreaticδ-cells into insulin producers[J]. Nature, 2014, 514(7523):503-507.
41
Zhou Q, Brown J, Kanarek A, et al.In vivoreprogramming of adult pancreatic exocrine cells to beta-cells[J]. Nature, 2008, 455(7213):627-632.
42
Li W, Cavelti-Weder C, Zhang Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells[J]. Nat Biotechnol, 2014, 32(12):1223-1230.
43
Baeyens L, Lemper M, Leuckx G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice[J]. Nat Biotechnol, 2014, 32(1):76-83.
44
Houbracken I, De Waele E, Lardon J, et al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas[J]. Gastroenterology, 2011, 141(2):731-751.
45
Lysy PA, Weir GC, Bonner-Weir S. Makingβcells from adult cells within the pancreas[J]. Curr Diab Rep, 2013, 13(5):695-703.
46
Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland[J]. Dev Dyn, 2011, 240(3):530-565.
47
Bonner-Weir S, Guo L, Li WC, et al. Islet neogenesis: a possible pathway for beta-cell replenishment[J]. Rev Diabet Stud, 2012, 9(4):407-416.
48
Furuyama K, Kawaguchi Y, Akiyama HA, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine[J]. Nat Genet, 2011, 43(1):34-41.
49
Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells[J]. Elife, 2013, 2:e00940.
50
Baertschiger RM, Bosco D, Morel PA, et al. Mesenchymal stem cells derived from human exocrine pancreas Express transcription factors implicated in beta-cell development[J]. Pancreas, 2008, 37(1):75-84.
51
Lysy PA, Corritore E, Sokal EM. New insights into diabetes cell therapy[J]. Curr Diab Rep, 2016, 16(5):38.
52
Corritore E, Dugnani E, Pasquale V, et al.β-Cell differentiation of human pancreatic duct-derived cells afterin vitroexpansion[J].Cell Reprogram, 2014, 16(6):456-466.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[3] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[4] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[5] 尚培中, 张润萍, 张伟, 贾国洪, 李晓武, 苗建军, 刘冰. 梗阻性黄疸临床防治新技术单中心应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 104-107.
[6] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[7] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[8] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[9] 杨天池, 韩威, 邱枫, 祁佳慧. 术中胰腺超声弹性成像在胰腺质地评估中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 646-650.
[10] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[11] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[12] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[13] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要