1 |
陈灏珠,林果为.实用内科学[M].第14版.北京:人民卫生出版社, 2013: 976.
|
2 |
Bergman M, Buysschaert M, Schwarz PE, et al. Diabetes prevention: global health policy and perspectives from the ground[J]. Diabetes Manag (Lond), 2015, 2(4):309-321.
|
3 |
Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation:1999-2010[J]. Diabetes Care, 2012, 35(7):1436-1445.
|
4 |
Lunsford KE, Jayanshankar K, Eiring AM, et al. Alloreactive (CD4-Independent) CD8+T cells jeopardize long-term survival of intrahepatic islet allografts[J]. Am J Transplant. 2008 Jun;8(6):1113-1128.
|
5 |
Sleater M, Diamond AS, Gill RG. Islet allograft rejection by contact-dependent CD8+T cells:perforin and FasL play alternate but obligatoryroles[J]. Am J Transplant, 2007, 7(8):1927-1933.
|
6 |
Zhang L, Hadley GA. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation[J]. Chin Med J, 2010, 123(24):3644-3651.
|
7 |
Zhang L, Moffatt-Bruce SD, Gaughan AA, et al. An anti-CDl03 immunotoxin promotes long-term survival of pancreatic islet allografts[J]. Am J Transplant, 2009, 9(9):2012-2023.
|
8 |
Ricordi C. Clinical islet transplantation update. in 75th Scientific Sessions of the American Diabetes Association[C]. Boston, USA, 2015.
|
9 |
Inverardi L. Improved graft survival in islet transplant recipients treated with G-CSF(filgrastim) and exenatide. in 75th Scientific Sessions of the American Diabetes Association[C]. Boston, USA, 2015.
|
10 |
Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation[J]. Nat Biotechnol, 2015, 33(5):518-523.
|
11 |
Phelps EA, Headen DM, Taylor WR, et al. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes[J]. Biomaterials, 2013, 34(19):4602-4611.
|
12 |
Samikannu B, Chen C, Lingwal N, et al. Dipeptidyl peptidase IV inhibition activates CREB and improves islet vascularization through VEGF-A/VEGFR-2 signaling pathway[J]. PLoS One, 2013, 8(12):e82639.
|
13 |
De Groot M, Schuurs TA, Van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts[J]. J Surg Res, 2004, 121(1):141-150.
|
14 |
Manning Fox JE, Lyon J, Dai XQ, et al. Human islet function following 20 years of cryogenic biobanking[J]. Diabetologia, 2015, 58(7):1503-1512.
|
15 |
Hering BJ, Wijkstrom M, Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3):301-303.
|
16 |
Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of Streptozotocin-Induced diabetes in primates up to 6 months without immunosuppression[J]. Transplantation, 2010, 90(10):1054-1062.
|
17 |
David KC. Cooper, human-pig xenotransplantation may be a alternatives way on human islet cell transplantation.in 76th Scientific Sessions of the American Diabetes Association[C]. New Orleans, USA, 2016.
|
18 |
Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation[J]. Xenotransplantation, 2007, 14(2):157-161.
|
19 |
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cellsin vivo[J]. Nat Biotechnol, 2008, 26(4):443-452.
|
20 |
D'amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401.
|
21 |
Fujikawa T, Oh SH, Pi L, et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells[J]. Am J Pathol, 2005, 166(6):1781-1791.
|
22 |
Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells[J]. Cell Cycle, 2009, 8(23):3822-3830.
|
23 |
Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice[J]. Diabetes, 2012, 61(8):2016-2029.
|
24 |
Bruin JE, Rezania A, Xu J, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice[J]. Diabetologia, 2013, 56(9):1987-1998.
|
25 |
Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11):1121-1133.
|
26 |
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreaticβcellsin vitro[J]. Cell, 2014, 159(2):428-439.
|
27 |
Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture[J]. Cell Stem Cell, 2011, 8(1):106-118.
|
28 |
Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67.
|
29 |
Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorate hyperglycemia in type 2 diabetic rats:identification of a novel role in improving insulin sensitivity[J]. Diabetes, 2012, 61(6):1616-1625.
|
30 |
Czubak P, Bojarska-Junak A, Tabarkiewicz J, et al. A modified method of insulin producing cells' Generation from bone Marrow-Derived mesenchymal stem cells[J]. J Diabetes Res, 2014 :628591.
|
31 |
Xie QP, Huang H, Xu B, et al. Human bone marrow mesenchumal stem cells differentiate into insulin-producing cells upon microenvironmental manipulationin vitro[J]. Differentiation, 2009,77(5):483-491.
|
32 |
Jiang FX, Morahan G. Pancreatic stem cells remain unresolved[J]. Stem Cells Dev, 2014, 23(23):2803-2812.
|
33 |
Shen WJ. Inhibition of DYRK1A and GSK3B induces human beta-cell proliferation[J]. Nat Commun, 2015,6:8372.
|
34 |
Toren-Haritan G, Efrat S. TGFβpathway inhibition redifferentiates human pancreatic isletβcells expandedin vitro[J]. PLoS One, 2015, 10(9):e0139168.
|
35 |
Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that Express insulin[J]. Cell Stem Cell, 2011, 8(3):281-293.
|
36 |
Razavi R, Najafabadi HS, Abdullah S, et al. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more beta-Cell production[J]. Diabetes, 2015, 64(4):1311-1323.
|
37 |
Collombat P, Xu XB, Ravassard PA, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells[J]. Cell, 2009, 138(3):449-462.
|
38 |
Thorel F, Népote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss[J]. Nature, 2010, 464(7292):1149-1154.
|
39 |
Cavelti-Weder C, Shtessel M, Reuss JE, et al. Pancreatic duct ligation after almost completeβ-cell loss: exocrine regeneration but no evidence ofβ-cell regeneration[J]. Endocrinology, 2013, 154(12):4493-4502.
|
40 |
Chera S, Baronnier D, Ghila L, et al. Diabetes recovery by age-dependent conversion of pancreaticδ-cells into insulin producers[J]. Nature, 2014, 514(7523):503-507.
|
41 |
Zhou Q, Brown J, Kanarek A, et al.In vivoreprogramming of adult pancreatic exocrine cells to beta-cells[J]. Nature, 2008, 455(7213):627-632.
|
42 |
Li W, Cavelti-Weder C, Zhang Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells[J]. Nat Biotechnol, 2014, 32(12):1223-1230.
|
43 |
Baeyens L, Lemper M, Leuckx G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice[J]. Nat Biotechnol, 2014, 32(1):76-83.
|
44 |
Houbracken I, De Waele E, Lardon J, et al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas[J]. Gastroenterology, 2011, 141(2):731-751.
|
45 |
Lysy PA, Weir GC, Bonner-Weir S. Makingβcells from adult cells within the pancreas[J]. Curr Diab Rep, 2013, 13(5):695-703.
|
46 |
Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland[J]. Dev Dyn, 2011, 240(3):530-565.
|
47 |
Bonner-Weir S, Guo L, Li WC, et al. Islet neogenesis: a possible pathway for beta-cell replenishment[J]. Rev Diabet Stud, 2012, 9(4):407-416.
|
48 |
Furuyama K, Kawaguchi Y, Akiyama HA, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine[J]. Nat Genet, 2011, 43(1):34-41.
|
49 |
Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells[J]. Elife, 2013, 2:e00940.
|
50 |
Baertschiger RM, Bosco D, Morel PA, et al. Mesenchymal stem cells derived from human exocrine pancreas Express transcription factors implicated in beta-cell development[J]. Pancreas, 2008, 37(1):75-84.
|
51 |
Lysy PA, Corritore E, Sokal EM. New insights into diabetes cell therapy[J]. Curr Diab Rep, 2016, 16(5):38.
|
52 |
Corritore E, Dugnani E, Pasquale V, et al.β-Cell differentiation of human pancreatic duct-derived cells afterin vitroexpansion[J].Cell Reprogram, 2014, 16(6):456-466.
|