切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (01) : 59 -63. doi: 10.3877/cma.j.issn.2095-1221.2017.01.011

所属专题: 文献

综述

糖尿病细胞治疗的研究进展
刘英1, 江霞1,()   
  1. 1. 300192 天津市第一中心医院内分泌科
  • 收稿日期:2016-07-26 出版日期:2017-02-01
  • 通信作者: 江霞

Research progress of diabetes cell therapy

Ying Liu1, Xia Jiang1,()   

  1. 1. Department of Endocrinology, the First Centre Hosipital, Tianjin 300192, China
  • Received:2016-07-26 Published:2017-02-01
  • Corresponding author: Xia Jiang
  • About author:
    Corresponding author: Jiang Xia, Email:
引用本文:

刘英, 江霞. 糖尿病细胞治疗的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(01): 59-63.

Ying Liu, Xia Jiang. Research progress of diabetes cell therapy[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(01): 59-63.

糖尿病细胞治疗能重建胰岛β细胞功能,为治愈糖尿病提供了可能。胰岛移植是一种能够稳定控制血糖并且耐受良好的治疗手段,可有效改善血糖代谢及并发症的发生发展,提高生活质量,但稀缺的胰腺供体和长期免疫排斥治疗引发了多能干细胞的相关性研究,目前已在糖尿病小鼠的基础试验中证实了其具有逆转糖尿病的潜能,然而安全是其致命的弱点。近些年,针对胰腺祖细胞的体外研究显示通过化学方法可以刺激腺泡或α细胞转化为β细胞新生并在不需要移植的情况下改善胰腺功能,规避不良反应。所以,糖尿病细胞治疗是潜能与风险并存的,只有扬长避短,才能为糖尿病治疗提供新的有效的方法。

Diabetes cell therapy can restoreβcell function and provides the possibility to cure diabetes. Islet transplantation can achieve stable blood sugar level and is well tolerated. It also improves blood sugar metabolism, prevent the development of complications, and improve the quality of life. But the scarcity of donor pancreas and the need for long-term immunosuppression make the researchers to seek solution from pluripotent stem cells (PSCs) , which have the potential to reverse diabetes in diabetic mice. However, safety is the Achilles' heel of PSCs. In recent years, pancreatic progenitor cells were shown to stimulate acini cells orαcells to differentiate intoβcells, which can provide a new effective method for diabetes treatment.

1
陈灏珠,林果为.实用内科学[M].第14版.北京:人民卫生出版社, 2013: 976.
2
Bergman M, Buysschaert M, Schwarz PE, et al. Diabetes prevention: global health policy and perspectives from the ground[J]. Diabetes Manag (Lond), 2015, 2(4):309-321.
3
Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation:1999-2010[J]. Diabetes Care, 2012, 35(7):1436-1445.
4
Lunsford KE, Jayanshankar K, Eiring AM, et al. Alloreactive (CD4-Independent) CD8+T cells jeopardize long-term survival of intrahepatic islet allografts[J]. Am J Transplant. 2008 Jun;8(6):1113-1128.
5
Sleater M, Diamond AS, Gill RG. Islet allograft rejection by contact-dependent CD8+T cells:perforin and FasL play alternate but obligatoryroles[J]. Am J Transplant, 2007, 7(8):1927-1933.
6
Zhang L, Hadley GA. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation[J]. Chin Med J, 2010, 123(24):3644-3651.
7
Zhang L, Moffatt-Bruce SD, Gaughan AA, et al. An anti-CDl03 immunotoxin promotes long-term survival of pancreatic islet allografts[J]. Am J Transplant, 2009, 9(9):2012-2023.
8
Ricordi C. Clinical islet transplantation update. in 75th Scientific Sessions of the American Diabetes Association[C]. Boston, USA, 2015.
9
Inverardi L. Improved graft survival in islet transplant recipients treated with G-CSF(filgrastim) and exenatide. in 75th Scientific Sessions of the American Diabetes Association[C]. Boston, USA, 2015.
10
Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation[J]. Nat Biotechnol, 2015, 33(5):518-523.
11
Phelps EA, Headen DM, Taylor WR, et al. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes[J]. Biomaterials, 2013, 34(19):4602-4611.
12
Samikannu B, Chen C, Lingwal N, et al. Dipeptidyl peptidase IV inhibition activates CREB and improves islet vascularization through VEGF-A/VEGFR-2 signaling pathway[J]. PLoS One, 2013, 8(12):e82639.
13
De Groot M, Schuurs TA, Van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts[J]. J Surg Res, 2004, 121(1):141-150.
14
Manning Fox JE, Lyon J, Dai XQ, et al. Human islet function following 20 years of cryogenic biobanking[J]. Diabetologia, 2015, 58(7):1503-1512.
15
Hering BJ, Wijkstrom M, Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3):301-303.
16
Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of Streptozotocin-Induced diabetes in primates up to 6 months without immunosuppression[J]. Transplantation, 2010, 90(10):1054-1062.
17
David KC. Cooper, human-pig xenotransplantation may be a alternatives way on human islet cell transplantation.in 76th Scientific Sessions of the American Diabetes Association[C]. New Orleans, USA, 2016.
18
Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation[J]. Xenotransplantation, 2007, 14(2):157-161.
19
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cellsin vivo[J]. Nat Biotechnol, 2008, 26(4):443-452.
20
D'amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401.
21
Fujikawa T, Oh SH, Pi L, et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells[J]. Am J Pathol, 2005, 166(6):1781-1791.
22
Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells[J]. Cell Cycle, 2009, 8(23):3822-3830.
23
Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice[J]. Diabetes, 2012, 61(8):2016-2029.
24
Bruin JE, Rezania A, Xu J, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice[J]. Diabetologia, 2013, 56(9):1987-1998.
25
Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11):1121-1133.
26
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreaticβcellsin vitro[J]. Cell, 2014, 159(2):428-439.
27
Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture[J]. Cell Stem Cell, 2011, 8(1):106-118.
28
Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67.
29
Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorate hyperglycemia in type 2 diabetic rats:identification of a novel role in improving insulin sensitivity[J]. Diabetes, 2012, 61(6):1616-1625.
30
Czubak P, Bojarska-Junak A, Tabarkiewicz J, et al. A modified method of insulin producing cells' Generation from bone Marrow-Derived mesenchymal stem cells[J]. J Diabetes Res, 2014 :628591.
31
Xie QP, Huang H, Xu B, et al. Human bone marrow mesenchumal stem cells differentiate into insulin-producing cells upon microenvironmental manipulationin vitro[J]. Differentiation, 2009,77(5):483-491.
32
Jiang FX, Morahan G. Pancreatic stem cells remain unresolved[J]. Stem Cells Dev, 2014, 23(23):2803-2812.
33
Shen WJ. Inhibition of DYRK1A and GSK3B induces human beta-cell proliferation[J]. Nat Commun, 2015,6:8372.
34
Toren-Haritan G, Efrat S. TGFβpathway inhibition redifferentiates human pancreatic isletβcells expandedin vitro[J]. PLoS One, 2015, 10(9):e0139168.
35
Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that Express insulin[J]. Cell Stem Cell, 2011, 8(3):281-293.
36
Razavi R, Najafabadi HS, Abdullah S, et al. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more beta-Cell production[J]. Diabetes, 2015, 64(4):1311-1323.
37
Collombat P, Xu XB, Ravassard PA, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells[J]. Cell, 2009, 138(3):449-462.
38
Thorel F, Népote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss[J]. Nature, 2010, 464(7292):1149-1154.
39
Cavelti-Weder C, Shtessel M, Reuss JE, et al. Pancreatic duct ligation after almost completeβ-cell loss: exocrine regeneration but no evidence ofβ-cell regeneration[J]. Endocrinology, 2013, 154(12):4493-4502.
40
Chera S, Baronnier D, Ghila L, et al. Diabetes recovery by age-dependent conversion of pancreaticδ-cells into insulin producers[J]. Nature, 2014, 514(7523):503-507.
41
Zhou Q, Brown J, Kanarek A, et al.In vivoreprogramming of adult pancreatic exocrine cells to beta-cells[J]. Nature, 2008, 455(7213):627-632.
42
Li W, Cavelti-Weder C, Zhang Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells[J]. Nat Biotechnol, 2014, 32(12):1223-1230.
43
Baeyens L, Lemper M, Leuckx G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice[J]. Nat Biotechnol, 2014, 32(1):76-83.
44
Houbracken I, De Waele E, Lardon J, et al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas[J]. Gastroenterology, 2011, 141(2):731-751.
45
Lysy PA, Weir GC, Bonner-Weir S. Makingβcells from adult cells within the pancreas[J]. Curr Diab Rep, 2013, 13(5):695-703.
46
Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland[J]. Dev Dyn, 2011, 240(3):530-565.
47
Bonner-Weir S, Guo L, Li WC, et al. Islet neogenesis: a possible pathway for beta-cell replenishment[J]. Rev Diabet Stud, 2012, 9(4):407-416.
48
Furuyama K, Kawaguchi Y, Akiyama HA, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine[J]. Nat Genet, 2011, 43(1):34-41.
49
Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells[J]. Elife, 2013, 2:e00940.
50
Baertschiger RM, Bosco D, Morel PA, et al. Mesenchymal stem cells derived from human exocrine pancreas Express transcription factors implicated in beta-cell development[J]. Pancreas, 2008, 37(1):75-84.
51
Lysy PA, Corritore E, Sokal EM. New insights into diabetes cell therapy[J]. Curr Diab Rep, 2016, 16(5):38.
52
Corritore E, Dugnani E, Pasquale V, et al.β-Cell differentiation of human pancreatic duct-derived cells afterin vitroexpansion[J].Cell Reprogram, 2014, 16(6):456-466.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[3] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[4] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 康婵娟, 张海涛, 翟静洁. 胰管支架置入术治疗急性胆源性胰腺炎的效果及对患者肝功能、炎症因子水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 667-670.
[8] 党军强, 杨雁灵, 汪庆强, 尚琳, 朱磊, 项红军. 主动经皮穿刺引流治疗重症急性胰腺炎并发急性坏死物积聚的疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 671-674.
[9] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[12] 赵月, 田坤, 张宗明, 郭震天, 刘立民, 张翀, 刘卓. 降钙素原对老年急性重度胆囊炎发生的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 801-806.
[13] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 曾明芬, 王艳. 急性胰腺炎合并脂肪肝患者CT 与彩色多普勒超声诊断参数与其病情和预后的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 531-535.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?