1 |
Wang K, Zhang Y, Wang G, et al. FXR agonists for MASH therapy:lessons and perspectives from obeticholic acid[J]. Med Res Rev, 2024,44(2):568-586.
|
2 |
Chan KE, Koh TJL, Tang ASP, et al.Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: ametaanalysis and systematic review of 10 739 607 individuals[J]. J Clin Endocrinol Metab, 2022, 107(9):2691-2700.
|
3 |
Subudhi S, Drescher HK, Dichtel LE, et al. Distinct hepatic geneexpression patterns of nafld in patients with obesity[J]. Hepatol Commun,2022, 6(1):77-89.
|
4 |
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling nafld disease burden in China, France, Germany, Italy, Japan, Spain, united kingdom,and united states for the period 2016-2030[J]. J Hepatol, 2018,69(4):896-904.
|
5 |
Wang C, Ma C, Gong L,et al.Macrophage polarization and its role in liver disease[J]. Front Immunol,2021, 12:803037. doi: 10.3389/fimmu.2021.803037.
|
6 |
Ahamed F, Eppler N, Jones E, et al. Understanding macrophage complexity in metabolic dysfunction-associated steatotic liver disease:transitioning from the M1/M2 paradigm to spatial dynamics[J].Livers,2024, 4(3):455-478.
|
7 |
Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1):45-56.
|
8 |
Hesketh M, Sahin KB, West ZE, et al. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing[J]. Int J Mol Sci,2017, 18(7):1545. doi: 10.3390/ijms18071545.
|
9 |
Rughetti A, Bharti S, Savai R, et al.Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways[J]. Future Sci OA, 2024, 10(1):2387961. doi: 10.1080/20565623.2024.2387961.
|
10 |
Pan M, Cai C, Li W, et al. Ebselen improves lipid metabolism by activating PI3K/Akt and inhibiting TLR4/JNK signaling pathway to al leviate nonalcoholic fatty liver[J].Cytokine, 2024, 181:156671. doi:10.1016/j.cyto.2024.156671.
|
11 |
Taru V, Szabo G, Mehal W, et al. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation[J]. J Hepatol, 2024, 81(5):895-910.
|
12 |
Lu H, Wu L, Liu L, et al. Quercetin Ameliorates Kidney Injury and Fibrosis by Modulating M1/M2 Macrophage Polarization[J]. Biochem Pharmacol, 2018, 154:203-212.
|
13 |
Chan WK, Chuah KH, Rajaram RB, et al. Metabolic dysfunctionassociated steatotic liver disease (MASLD): A state-of-the-art review[J]. J Obes Metab Syndr, 2023, 32(3):197-213.
|
14 |
Ahsan F, Oliveri F, Goud HK, et al. Pleiotropic Effects of Statins in the Light of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis[J]. Cureus, 2020, 12(9):e10446. doi: 10.7759/cureus.10446.
|
15 |
Tzanaki I, Agouridis AP, Kostapanos MS. Is there a role of lipidlowering therapies in the management of fatty liver disease[J]? World J Hepatol, 2022, 14(1):119-139.
|
16 |
Zhang X, Coker OO, Chu ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4):761-774.
|
17 |
Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine[J]. Immunol Lett, 2018, 196:22-32. doi: 10.1016/j.imlet.2018.01.009.
|
18 |
Tian Z, Yang S. Integrating the characteristic genes of macrophage pseudotime analysis in single-cell RNA-seq to construct a prediction model of atherosclerosis[J]. Aging (Albany NY), 2023, 15(13):6361-6379.
|
19 |
Rajamannan NM, Subramaniam M, Springett M, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve[J]. Circulation, 2002,105(22):2660-2665.
|
20 |
Bustos C, Hernández-Presa MA, Ortego M, et al. HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis[J]. J Am Coll Cardiol, 1998, 32(7):2057-2064.
|
21 |
孟子行,李艳国,戎浩,等.scRNA-seq 与scATAC-seq 数据整合分析方法及其在生物医学中的应用[J].中国细胞生物学学报, 2024,46(11):1985-1996.
|
22 |
Cai Y, Dai Y, Wang Y, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis[J]. EBioMedicine,2020, 53:102686. doi: 10.1016/j.ebiom.2020.102686.
|
23 |
Li Y, Jia Z, Liu X, et al.Single-cell sequencing technology to characterize stem T-cell subpopulations in acute T-lymphoblastic leukemia and the role of stem T-cells in the disease process[J]. Aging(Albany NY), 2024, 16(20):13117-13131.
|
24 |
Wu H, Dong J, Yu H, et al.Single-ell RNA and ATAC sequencing reveal hemodialysis-related immune dysregulation of circulating immune cell subpopulations[J]. Front Immunol, 2022, 13:878226. doi: 10.3389/fimmu.2022.878226.
|
25 |
Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment[J]. Am J Hematol, 2019,94(5):604-616.
|
26 |
Pavlasova G, Mraz M. The regulation and function of CD20: an"enigma" of B-cell biology and targeted therapy[J]. Haematologica,2020, 105(6):1494-1506.
|
27 |
Li C, Guan R, Li W, et al. Single-cell RNA sequencing reveals tumor immune microenvironment in human hypopharygeal squamous cell carcinoma and lymphatic metastasis[J]. Front Immunol, 2023,14:1168191. doi: 10.3389/fimmu.2023.1168191.
|
28 |
Chen Y, Ouyang Y, Li Z, et al. S100A8 and S100A9 in Cancer[J].Biochim Biophys Acta Rev Cancer, 2023, 1878(3):188891. doi:10.1016/j.bbcan.2023.188891.
|
29 |
Alam J, Yazdanpanah G, Ratnapriya R, et al. Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes[J]. Mucosal Immunol, 2022, 15(4):620-628.
|
30 |
Murray PJ. Macrophage Polarization[J]. Annu Rev Physiol, 2017,79:541-566.
|
31 |
Zhu S, Cheng Q, Zou M, et al.Combining bulk and scRNA-seq to explore the molecular mechanisms governing the distinct efferocytosis activities of a macrophage subpopulation in PDAC[J]. J Cell Mol Med,2024, 28(7):e18266. doi: 10.1111/jcmm.18266.
|
32 |
Sanchez-Moral L, Paul T, Martori C, et al. Macrophage CD5L is a target for cancer immunotherapy[J]. EBioMedicine, 2023, 91:104555.doi: 10.1016/j.ebiom.2023.104555.
|
33 |
Bonnardel J, T'Jonck W, Gaublomme D, etal. Stellate ells, hepatocytes,and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche[J]. Immunity, 2019, 51(4):638-654.e9.
|
34 |
Lee MF, Wang NM, Chu YW, et al. The anti-inflammatory effect of Lactococcus lactis-Ling-Zhi 8 on ameliorating atherosclerosis and nonalcoholic fatty liver in high-fat diet rabbits[J]. Int J Mol Sci, 2024,25(20):11278. doi: 10.3390/ijms252011278.
|
35 |
Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12:803037. doi: 10.3389/fimmu.2021.803037.
|
36 |
Cheng C, Chen W, Jin H, et al. A review of single-cell RNA-Seq annotation, integration, and cell-cell communication[J]. Cells, 2023,12(15):1970. doi: 10.3390/cells12151970.
|
37 |
Yan M, Man S, Ma L, et al. Immunological mechanisms in steatotic liver diseases: an overview and clinical perspectives[J]. Clin Mol Hepatol, 2024, 30(4):620-648.
|
38 |
Liu L, Guo H, Song A, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways[J]. BMC Immunol, 2020, 21(1):32. doi: 10.1186/s12865-020-00355-y.
|
39 |
Chen XX, Tang L, Fu YM, et al. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-toll-like receptor-4 signaling in alveolar macrophages[J]. Int J Mol Med, 2017, 40(6):1921-1931.
|
40 |
Gong J, Li J, Dong H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and Myd88[J]. BMC Complement Altern Med, 2019, 19(1):314. doi: 10.1186/s12906-019-2710-6.
|
41 |
Lu H, Wu L, Liu L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization[J]. Biochem Pharmacol, 2018, 154:203-212.
|
42 |
Gu X, Zhang Y, Li D, et al. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation[J]. Cell Signal, 2020,69:109553. doi: 10.1016/j.cellsig.2020.109553.
|