1 |
李妍, 徐兴祥. 高通量测序技术的研究进展[J].中国医学工程, 2019(3):6.
|
2 |
Schloss Ja. How to get genomes at one ten-thousandth the cost[J]. Nat Biotechnol, 2008, 26(10):1113-1115.
|
3 |
程小芳. 基于共标签标记的单管长片段测序技术研发[D]. 华南理工大学, 2019.
|
4 |
Pennisi E. Genome sequencing. Searchforpore-Fection[J]. Science, 2012, 336(6081):534-537.
|
5 |
Amini S, Pushkarev D, Christiansen L, et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing[J]. Nat Genet, 2014, 46(12):1343-1349.
|
6 |
Zhang F, Christiansen L, Thomas J, et al. Haplotype phasing of whole human genomes using bead-based barcode partitioning in a single tube[J]. Nat Biotechnol, 2017, 35(9):852-857.
|
7 |
Zheng GX, Lau BT, Schnall-Levin M, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing[J]. Nat Biotechnol, 2016, 34(3):303-311.
|
8 |
Greer SU, Nadauld LD, Lau BT, et al. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases[J]. Genome Med, 2017, 9(1):57.
|
9 |
Drmanac R. Nucleic acid analysis by random mixtures of non-overlapping fragments[P]. US:EP17167651.3, 20171220.
|
10 |
Peters BA, Kermani BG, Sparks AB, et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells[J]. Nature, 2012, 487(7406):190-195.
|
11 |
Peters B, Cheng X, Wu M, et al. A simple bead-based method for generating cost-effective co-barcoded sequence reads. Protocol Exchange, 2018. DOI: 10.1038/protex.2018.116
|
12 |
Drmanac R, Peters Ba, Alexeev A. Multiple tagging of long DNA fragments[P]. US:EP20170317.0, 20201125.
|
13 |
Wang O, Chin R, Cheng X, et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly[J]. Genome Res, 2019, 29(5):798-808.
|
14 |
Liu S, Wang H, Leigh D, et al. Third-generation sequencing: any future opportunities for PGT?[J]. J Assist Reprod Genet, 2021, 38(2):357-364.
|
15 |
Wang L, Xi Y, Zhang W, et al. 3' Branch ligation: a novel method to ligate non-complementary DNA to recessed or internal 3'OH ends in DNA or RNA[J]. DNA Research, 2018, 26(1):45-53.
|
16 |
Tian R, Han K, Geng Y, et al. A chromosome-level genome of the agile gracile mouse opossum (gracilinanus agilis) [J]. Genome Biol Evol, 2021, 13(8):evab162.
|
17 |
Zhao N, Guo H, Jia L, et al. Genome assembly and annotation at the chromosomal level of first Pleuronectidae: Verasper variegatus provides a basis for phylogenetic study of Pleuronectiformes[J]. Genomics, 2021, 113(2):717-726.
|
18 |
Fan G, Song Y, Yang L, et al. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K) [J]. Giga Science, 2020, 9(8):giaa080.
|
19 |
Murigneux V, Rai SK, Furtado A, et al. Comparison of long-read methods for sequencing and assembly of a plant genome[J]. Giga Science, 2020, 9(12):giaa146.
|
20 |
H Liu, Lan T, Fang D, et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China[J]. bioRxiv 671560, 2019. doi: https://doi.org/10.1101/671560
|
21 |
|
22 |
Zhang Z, Liu G, Chen Y, et al. Comparison of different sequencing strategies for assembling chromosome-level genomes of extremophiles with variable GC content[J]. iScience, 2021, 24(3):102219.
|
23 |
|
24 |
Sun S, Wang Y, Zeng W, et al. The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation[J]. Sci Rep, 2020, 10(1):8164.
|
25 |
Huang C, Shao L, Qu S, et al. An integrated Asian human SNV and indel benchmark established using multiple sequencing methods[J]. Sci Rep, 2020, 10(1):9821.
|
26 |
Chen S, Yin X, Zhang S, et al. Comprehensive preimplantation genetic testing by massively parallel sequencing[J]. Hum Reprod, 2021, 36(1):236-247.
|
27 |
Zhang S, Lei C, Wu J, et al. The establishment and application of preimplantation genetic haplotyping in embryo diagnosis for reciprocal and Robertsonian translocation carriers[J]. BMC Med Genomics, 2017, 10(1):60.
|
28 |
Weng J, Chen T, Xie Y, et al. IterCluster: a barcode clustering algorithm for long fragment read analysis[J]. Peer J, 2020, 8:e8431.
|
29 |
Xu M, Guo L, Gu S, et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads[J]. Giga Science, 2020, 9(9):giaa094.
|
30 |
Guo L, Xu M, Wang W, et al. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme[J]. BMC Bioinformatics, 2021, 22(1):158.
|
31 |
Guo L, Xu M, Wang W, et al. Symbiont-Screener: a reference-free filter to automatically separate host sequences and contaminants for long reads or co-barcoded reads by unsupervised clustering[J]. bioRxiv 354621, 2020.doi: https://doi.org/10.1101/2020.10.26.354621
|
32 |
Chen Y, Chen Y, Shi C, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. Giga Science, 2018, 7(1):1-6.
|
33 |
Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies[J]. Genome Res, 2017, 27(5):801-812.
|
34 |
Dutta UR, Rao SN, Pidugu VK, et al. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing[J]. Genomics, 2019, 111(5):1108-1114.
|
35 |
MM Yc, Yu Q, Ma M, et al. Variant haplophasing by long-read sequencing: a new approach to preimplantation genetic testing workups[J]. Fertil Steril, 2021, 116(3):774-783.
|
36 |
Hu L, Cheng D, Gong F, et al. Reciprocal Translocation Carrier Diagnosis in Preimplantation Human Embryos[J]. EBio Medicine, 2016, 14:139-147.
|
37 |
Cheng D, Hu L, Gong F, et al. Clinical outcomes following preimplantation genetic testing and microdissecting junction region in couples with balanced chromosome rearrangement[J]. J Assist Reprod Genet, 2021, 383,735-742.
|