1 |
Cheng K, Ibrahim A, Hensley MT, et al. Relative roles of CD90 and c-kit to the regenerative efficacy of cardiosphere-derived cells in humans and in a mouse model of myocardial infarction[J]. J Am Heart Assoc, 2014, 3(5):e001260.
|
2 |
Eschenhagen T, Bolli R, Braun T, et al. Cardiomyocyte regeneration: a consensus statement[J]. Circulation, 2017, 136(7):680-686.
|
3 |
Van Berlo JH, Kanisicak O, Maillet M, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart[J]. Nature, 2014, 509(7500):337-341.
|
4 |
Sultana N, Zhang L, Yan J, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells[J]. Nat Commun, 2015, 6:8701.
|
5 |
Liu Q, Yang R, Huang X, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes[J]. Cell Res, 2016, 26(1):119-130.
|
6 |
Wallner M, Duran JM, Mohsin S, et al. Acute catecholamine exposure causes reversible myocyte injury without cardiac regeneration[J]. Circ Res, 2016, 119(7):865-879.
|
7 |
Maliken BD, Molkentin JD. Undeniable evidence that the adult mammalian heart lacks an endogenous regenerative stem cell[J]. Circulation, 2018, 138(8):806-808.
|
8 |
Lefer DJ, Marbán E. Is cardioprotection dead?[J]. Circulation, 2017, 136(1):98-109.
|
9 |
Oh H. Cell therapy trials in congenital heart disease[J]. Circ Res, 2017, 120(8):1353-1366.
|
10 |
Ellison GM, Smith AJ, Waring CD, et al. Adult cardiac stem cells: identity, location and potential[M]. Adult Stem Cells, 2nd Edition. 2014: 47-90.
|
11 |
Yacoub MH, Terrovitis J. CADUCEUS, SCIPIO, ALCADIA: Cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving[J]. Glob Cardiol Sci Pract, 2013, 2013(1):5-8.
|
12 |
Sano T, Ousaka D, Goto T, et al. Impact of cardiac progenitor cells on heart failure and survival in single ventricle congenital heart disease[J]. Circ Res, 2018, 122(7):994-1005.
|
13 |
Ishigami S, Ohtsuki S, Eitoku T, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the perseus (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial[J]. Circ Res, 2017, 120(7):1162-1173.
|
14 |
Eitoku T, Baba K, Kondou M, et al. Transcoronary cell infusion with the stop-flow technique in children with single-ventricle physiology[J]. Pediatr Int, 2018, 60(3):240-246.
|
15 |
Tarui S, Ishigami S, Ousaka D, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the transcoronary infusion of cardiac progenitor cells in patients with single-ventricle physiology (TICAP) trial[J]. J Thorac Cardiovasc Surg, 2015, 150(5):1198-1207, 1208.e1-2.
|
16 |
Ishigami S, Ohtsuki S, Tarui S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial[J]. Circ Res, 2015, 116(4):653-664.
|
17 |
Malliaras K, Makkar RR, Smith RR, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-derived autologous stem cells to reverse ventricular dysfunction)[J]. J Am Coll Cardiol, 2014, 63(2):110-122.
|
18 |
Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial[J]. Lancet, 2012, 379(9819):895-904.
|
19 |
Chugh AR, Beache GM, Loughran JH, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance[J]. Circulation, 2012, 126(11 Suppl 1):S54-64.
|
20 |
Bolli R, Chugh AR, D'amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial[J]. Lancet, 2011, 378(9806):1847-1857.
|
21 |
He L, Han M, Zhang Z, et al. Reassessment of c-Kit(+) cells for cardiomyocyte contribution in adult heart[J]. Circulation, 2019, 140(2):164-166.
|
22 |
Vagnozzi RJ, Sargent MA, Lin SJ, et al. Genetic lineage tracing of sca- 1(+) cells reveals endothelial but not myogenic contribution to the murine heart[J]. Circulation, 2018, 138(25):2931-2939.
|
23 |
Nakamura K, Murry CE. Function follows form- a review of cardiac cell therapy[J]. Circ J, 2019, 83(12):2399-2412.
|
24 |
He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization[J]. Circ Res, 2003, 93(1):32-39.
|
25 |
Marban E. A mechanistic roadmap for the clinical application of cardiac cell therapies[J]. Nat Biomed Eng, 2018, 2(6):353-361.
|
26 |
Davis DR. Cardiac stem cells in the post-Anversa era[J]. Eur Heart J, 2019, 40(13):1039-1041.
|
27 |
Heo JS, Choi Y, Kim HS, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016, 37(1):115-125.
|
28 |
Morgenthau A, Frishman WH. Genetic origins of tetralogy of fallot[J]. Cardiol Rev, 2018, 26(2):86-92.
|
29 |
Tateishi K, Ashihara E, Honsho S, et al. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3 beta signaling[J]. Biochem Biophys Res Commun, 2007, 352(3):635-641.
|