1 |
Grogan BF, Hsu JR. Volumetric muscle loss[J]. J Am Acad Orthop Surg, 2011 (1):S35-37.
|
2 |
Ten Broek RW, Grefte S, Von den Hoff JW.Regulatory factors and cell populations involved in skeletal muscle regeneration[J]. J Cell Physiol, 2010, 224(1):7-16.
|
3 |
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment - relevance for therapy[J]. FEBS J, 2013, 280(17, SI):4281-4293.
|
4 |
Cossu G, Mavilio F. Myogenic stem cells for the therapy of primary myopathies:wishful thinking or therapeutic perspective?[J]. J Clin Invest, 2000, 105(12):1669-1674.
|
5 |
Zammit PS. All muscle satellite cells are equal,but are some more equal than others?[J]. J Cell Sci, 2008, 121(18):2975-2982.
|
6 |
Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications[J]. J Immunol Res, 2015:394917.
|
7 |
Bian S, Zhang L, Duan L, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J]. J Mol Med (Berl), 2014, 92(4):387-397.
|
8 |
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
|
9 |
Kokabu S, Lowery JW, Jimi E. Cell fate and differentiation of bone marrow mesenchymal stem cells[J]. Stem Cells Int, 2016:3753581.
|
10 |
Guo XF, Bai Y, Zhang L, et al. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications[J]. Stem Cell Res Ther, 2018, 9(1):44.
|
11 |
Muruganandan S, Roman AA, Sinal CJ. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program[J]. Cell Mol Life Sci, 2009, 66(2):236-253.
|
12 |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
|
13 |
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1):63.
|
14 |
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Molecular Therapy, 2015, 23(5):812-823.
|
15 |
Bruno S, Tapparo M, Collino F, et al. Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells[J]. Tissue Eng Part A, 2017, 23(21/22):1262-1273.
|
16 |
Nakamura Y, Miyaki S, Ishitobi HA, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration[J]. FEBS Lett, 2015, 589(11):1257-1265.
|
17 |
Krampera M, Cosmi L, Angeli R, et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells[J]. Stem Cells, 2006, 24(2):386-398.
|
18 |
Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications[J]. Arch Pharm Res, 2012, 35(2):213-221.
|
19 |
Ferrari G, Cusella G, Angelis D, et al. Muscle regeneration by bone Marrow-Derived myogenic progenitors[J]. Science, 1998, 279(5356): 1528-1530.
|
20 |
Helal MA, Shaheen NE, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats[J]. Immunopharmacol Immunotoxicol, 2016:1-9. [Epub ahead of print]
|
21 |
Gala K, Burdzinska A, Idziak M, et al. Transplantation of mesenchymal stem cells into the skeletal muscle induces cytokine Generation[J]. Cytokine, 2013, 64(1):243-250.
|
22 |
As GR, Van DI, Boersma H, et al. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice[J]. Cell Transplant, 2011, 20(2):217-231.
|
23 |
Winkler T, Von RP, Matziolis G, et al. Dose-response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats[J]. Tissue Eng Part A, 2009, 15(3):487-492.
|
24 |
Winkler T, Von Roth P, Radojewski PA, et al. Immediate and delayed transplantation of mesenchymal stem cells improve muscle force after skeletal muscle injury in rats[J]. J Tissue Eng Regen Med, 2012, 6(3):s60-s67.
|
25 |
Von Roth P, Duda GN, Radojewski PA, et al. Mesenchymal stem cell therapy following muscle trauma leads to improved muscular regeneration in both male and female rats[J]. Gend Med, 2012, 9(2):129-136.
|
26 |
Von Roth P, Winkler T, Rechenbach KA, et al. Improvement of contraction force in injured skeletal muscle after autologous mesenchymal stroma cell transplantation is accompanied by slow to fast fiber type shift[J]. Transfus Med Hemother, 2013, 40(6):425-430.
|
27 |
Osses N, Brandan E. ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression[J]. Am J Physiol Cell Physiol, 2002, 282(2):C383-C394.
|
28 |
Merritt EK, Cannon MV, Hammers DW, et al. Repair of traumatic skeletal muscle injury with Bone-Marrow-Derived mesenchymal stem cells seeded on extracellular matrix[J]. Tissue Eng Part A, 2010, 16(9):2871-2881.
|
29 |
Kheradmandi M, Vasheghani-Farahani E, Ghiaseddin A, et al. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold[J]. J Biomed Mater Res A, 2016, 104(7):1720-1727.
|
30 |
Zhao CY, Andersen H, Ozyilmaz BA, et al. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled Carbon nanotube films for skeletal muscle engineering[J]. Nanoscale, 2015, 7(43):18239-18249.
|
31 |
Xu YY, Li ZQ, Li XF, et al. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels[J]. Acta Biomater, 2015, 26:23-33.
|
32 |
Du X W, Wu H L, Zhu Y F, et al. Experimental study of therapy of bone marrow mesenchymal stem cells or muscle-like cells/calcium alginate composite gel for the treatment of stress urinary incontinence[J]. Neurourol Urodyn, 2013, 32(3): 281-286.
|
33 |
Egusa H, Kobayashi M, Matsumoto T, et al. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone Marrow-Derived mesenchymal stromal cells with cell alignment[J]. Tissue Eng Part A, 2013, 19(5/6):770-782.
|
34 |
Haghighipour N, Heidarian S, Shokrgozar MA, et al. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell[J]. Cell Biol Int, 2012, 36(7):669-675.
|
35 |
Ross CL, Siriwardane M, Almeida-Porada G, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation[J]. Stem Cell Res, 2015, 15(1):96-108.
|
36 |
Oshima S, Kamei N, Nakasa T, et al. Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model[J]. J Orthop Sci, 2014, 19(3):478-488.
|
37 |
Nakabayashi A, Kamei N, Sunagawa T, et al. In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model[J]. J Orthop Res, 2013, 31(5):754-759.
|
38 |
Supokawej A, Kheolamai P, Nartprayut K, et al. Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment[J]. Turk J Haematol, 2013, 30(2):115-121.
|
39 |
Fasolino I, Guarino V, Cirillo VA. 5-Azacytidine-mediated hMSC behavior on electrospun scaffolds for skeletal muscle regeneration[J]. J Biomed Mater Res A, 2017, 105(9):2551-2561.
|
40 |
Conforti E, Arrigoni E, Piccoli M, et al. Reversine increases multipotent human mesenchymal cells differentiation potential[J]. J Biol Regul Homeost Agents, 2011, 25(2 Suppl):S25-33.
|
41 |
Xinaris C, Morigi M, Benedetti V, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion[J]. Cell Transplant, 2013, 22(3):423-436.
|
42 |
Xu X, Zhu F, Zhang M, et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization[J]. Cells Tissues Organs, 2013, 197(2):103-113.
|
43 |
Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/ CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823.
|
44 |
Kowalski K, Kołodziejczyk A, Sikorska M, et al. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf- 1/Cxcr7 axis[J]. Cell Adh Migr, 2017, 11(4):384-398.
|
45 |
Xie J, Wang W, Si JW, et al. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells[J]. Cell Immunol, 2013, 281(1):68-75.
|
46 |
Brzoska E, Kowalewska M, Markowska-Zagrajek A, et al. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells[J]. Biology of the Cell, 2012, 104(12):722-737.
|
47 |
Isao T, Hemler ME. Role of transmembrane 4 superfamily(Tm4sf)proteins Cd9 and Cd81 in muscle cell fusion and myotube maintenance[J]. J Cell Biol, 1999, 146(4):893-904.
|
48 |
Charrin S, Latil M, Soave SA, et al. Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81[J]. Nat Commun, 2013, 4(2):1674.
|
49 |
Brzoska E, Kowalski K, Markowska-Zagrajek AA, et al. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration[J]. Stem Cell Res Ther, 2015, 6(1):46.
|
50 |
Gang EJ, Bosnakovski D, Simsek T, et al. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage[J]. Exp Cell Res, 2008, 314(8):1721-1733.
|
51 |
Beier JP, Bitto FF, Lange C, et al. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts[J]. Cell Biol Int, 2013, 35(4):397-406.
|
52 |
Witt R, Weigand A, Boos AM, et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering[J]. BMC Cell Biol, 2017, 18(1):15.
|