切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (06) : 374 -382. doi: 10.3877/cma.j.issn.2095-1221.2025.06.008

综述

细胞焦亡在脓毒症相关肝损伤中的作用机制及干预药物的研究进展
安嘉伟1,3, 刘国臣1,3, 朱俊宇1, 盖新宇2,()   
  1. 1400042 重庆,陆军军医大学大坪医院战伤感染与特需药品研究室,创伤与化学中毒全国重点实验室
    2573100 海口,海南医科大学第二附属医院急诊科,海南省急危重症临床医学研究中心
    3400038 重庆,陆军军医大学基础医学院
  • 收稿日期:2025-08-11 出版日期:2025-12-01
  • 通信作者: 盖新宇
  • 基金资助:
    海南省卫生健康科技创新联合项目(WSJK2025QN117,WSJK2025ZD221)

Advances in the mechanism of pyroptosis in sepsis-associated liver injury and intervention drugs

Jiawei An1,3, Guocheng Liu1,3, Junyu Zhu1, Xinyu Gai2,()   

  1. 1Department of Wound Infection and Drug, Daping Hospital, Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400042, China
    2Emergency Department of the Second Affiliated Hospital of Hainan Medical University, the Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou 573100, China
    3College of Basic Medicine, Army Medical University, Chongqing 400038, China
  • Received:2025-08-11 Published:2025-12-01
  • Corresponding author: Xinyu Gai
引用本文:

安嘉伟, 刘国臣, 朱俊宇, 盖新宇. 细胞焦亡在脓毒症相关肝损伤中的作用机制及干预药物的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 374-382.

Jiawei An, Guocheng Liu, Junyu Zhu, Xinyu Gai. Advances in the mechanism of pyroptosis in sepsis-associated liver injury and intervention drugs[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(06): 374-382.

脓毒症是由宿主感染反应失调引发的致命性器官功能障碍综合征,具有高发病率和高病死率的特点。肝脏是脓毒症进程中关键代谢与免疫器官,而脓毒症相关肝损伤(SALI)是脓毒症患者死亡率独立的预测指标,肝功能障碍会严重损害其预后,减轻SALI是降低脓毒症患者死亡率的关键。SALI的发病机制复杂,细胞焦亡作为促炎程序性细胞死亡形式,在其中发挥关键作用。细胞焦亡通过经典(NLRP3-caspase-1-GSDMD)及非经典(caspase-4/5/11-GSDMD)途径调控。肝脏中肝实质细胞、肝巨噬细胞和中性粒细胞等不同类型细胞的焦亡,通过炎症放大和微循环障碍等机制参与SALI进程。目前,临床上现有的部分护肝药物已被证实具有抗焦亡的作用。一些天然化合物、人工合成药物、内源性活性分子及干细胞治疗等也可通过调控焦亡通路减轻SALI。综上,细胞焦亡是SALI的关键机制,深入探究其调控机制及干预药物,可为SALI精准防治提供新策略。

Sepsis is a life-threatening organ dysfunction syndrome caused by dysregulation of the host's response to infection, characterized by high morbidity and mortality. The liver is a key metabolic and immune organ in the progression of sepsis, and sepsis-associated liver injury (SALI) is an independent predictor of mortality in sepsis patients. Hepatic dysfunction can severely impair their prognosis, and alleviating SALI is crucial for reducing the mortality of sepsis patients. The pathogenesis of SALI is complex, and pyroptosis, as a pro-inflammatory form of programmed cell death, plays a key role in it. Pyroptosis is regulated through classical (NLRP3-caspase-1-GSDMD) and non-classical (caspase-4/5/11-GSDMD) pathways. The pyroptosis of different cell types in the liver, such as hepatocytes, hepatic macrophages, and neutrophils, can participate in the process of SALI through mechanisms such as inflammation amplification and microcirculatory disturbance. At present, some existing hepatoprotective drugs in clinical practice have been proven to have anti-pyroptotic effects. Some natural compounds, synthetic drugs, endogenous active molecules, and stem cell therapy can also alleviate SALI by regulating pyroptosis pathways. In conclusion, pyroptosis is a key mechanism of SALI, and in-depth exploration of its regulatory mechanisms and intervention drugs can provide new strategies for the precise prevention and treatment of SALI.

图1 肝脏中不同细胞类型的焦亡在SALI中的作用机制
图2 不同护肝药物抗焦亡主要机制
表1 不同药物调控细胞焦亡缓解SALI的机制
药物/治疗 动物诱导模型 抗焦亡机制 损伤缓解表现 文献
黄精多糖 LPS 抑制NLRP3→阻断caspase-1/GSDMD焦亡 血清ALT/AST趋近正常;肝组织IL-1β/IL-18降低超过50%;肝组织病理改善 [51]
茶黄素 LPS 抑制NLRP3→抑制caspase-1/GSDMD-NT→阻断焦亡 血清IL-1β降低;肝组织caspase-1活性下降 [52]
甘草苷XLIX CLP 调控NF-κB/PPAR-α→阻断NLRP3焦亡 肝组织NLRP3降低;血清ALT/AST降低 [53]
黄芪甲苷Ⅳ LPS+D-gal 激活AMPK/SIRT1→抑制caspase-11/GSDMD→抑制焦亡 血清ALT/AST降低40%~ 60%;肝组织坏死面积减小≥50% [54]
姜黄素 LPS 激活Nrf2/HO-1→降低ROS→抑制NLRP3/caspase-1/GSDMD焦亡 血清ALT/AST降低30%~ 50%;肝组织炎症浸润减小40%~ 50%;肝IL-1β/IL-18 mRNA降低60%+ [55]
TLR4抑制剂 腹腔注射大肠杆菌 抑制TLR4→阻断NLRP3/GSDMD焦亡 肝组织TLR4/GSDMD-N降低;血清IL-1β降低 [56]
CD38激活剂 腹腔注射大肠杆菌 激活CD38→反向调控TLR4-NLRP3→抑制焦亡 血清ALT/AST降低;小鼠存活率升高 [56]
Samotolisib LPS 激活PI3K/AKT→升高Nedd4→降解caspase-11→抑制焦亡 肝组织caspase-11活性下降;血清ALT/AST降低 [57]
沙罗格列肽 LPS 抑制caspase-11+NLRP3→抑制经典+非经典焦亡 肝组织caspase-11/NLRP3降低;肝损伤缓解 [58]
IAA94 LPS 抑制CLICs→阻断NEK7-NLRP3→抑制NLRP3焦亡 肝脏炎症浸润减小;肝组织损伤面积减小 [59]
二甲基富马酸(DMF) CLP 抑制caspase-11→阻断非经典焦亡 肝组织caspase-11降低;血清ALT/AST降低 [60]
雌激素 LPS 靶向NLRP3→抑制caspase-1/IL-1β→阻断焦亡 血清AST/ALT降低;肝细胞焦亡率降低 [61]
谷氨酰胺 CLP 晚期:阻断焦亡通路→维持焦亡平衡 脓毒症晚期ALT/AST降低;+抗生素→肝损伤缓解 [62]
辅酶Q10 CLP 抑制NLRP3→降低IL-1β→抑制焦亡 肝组织NLRP3/IL-1β降低;血清ALT/AST降低 [63]
鸢尾素 LPS 抑制NF-κB→降低NLRP3/caspase-1→抑制焦亡 肝组织NLRP3/GSDMD降低;血清ALT/AST降低 [64]
IRG1/衣康酸 LPS 抑制GSDMD +激活Nrf2→抑制NLRP3焦亡 血清ALT/AST降低;肝组织GSDMD-N/NLRP3降低 [65]
骨髓间充质干细(BMSC)移植 LPS 旁分泌→降低NLRP3/IL-1β→阻断肝细胞/巨噬细胞焦亡 血清IL-1β/IL-18降低;肝细胞坏死面积减小 [66]
1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8):801-810.
2
Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis[J]. Intensive Care Med, 2020, 46(8):1552-1562.
3
Markwart R, Saito H, Harder T, et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis[J]. Intensive Care Med, 2020, 46(8):1536-1551.
4
Sun J, Zhang J, Wang X, et al. Gut-liver crosstalk in sepsis-induced liver injury[J]. Crit Care, 2020, 24(1):614.
5
Strnad P, Tacke F, Koch A, et al. Liver — guardian, modifier and target of sepsis[J]. Nat Rev Gastroenterol Hepatol, 2016, 14(1):55-66.
6
Guo Y, Guo W, Chen H, et al. Mechanisms of sepsis-induced acute liver injury: a comprehensive review[J]. Front Cell Infect Microbiol, 2025, 15:1504223.
7
Yan J, Li S, Li S. The role of the liver in sepsis[J]. Int Rev Immunol, 2014, 33(6):498-510.
8
郭笑潇, 陈明泉. 细胞焦亡在脓毒症肝损伤中的分子机制和研究进展[J]. 肝脏, 2021, 26(3):321-323.
9
Chen JW, Liu CY, Li S, et al. Sepsis-associated liver injury: Mechanisms and potential therapeutic targets[J]. World J Gastroenterol, 2024, 30(42):4518-4522.
10
Xu X, Yang T, An J, et al. Liver injury in sepsis: manifestations, mechanisms and emerging therapeutic strategies[J]. Front Immunol, 2025, 16:1575554.
11
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018[J]. Cell Death Differ, 2018, 25(3):486-541.
12
Chen R, Zeng L, Zhu S, et al. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis[J]. Sci Adv, 2019, 5(5):eaav5562.
13
Martínez-García JJ, Martínez-Banaclocha H, Angosto-Bazarra D, et al. P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis[J]. Nat Commun, 2019, 10(1):2711.
14
Wen R, Liu YP, Tong XX, et al. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction[J]. Front Cell Infect Microbiol, 2022, 12:962139.
15
李秀芳,郝泉水,高雄,等. SIRT1-NLRP3轴介导的细胞焦亡在瑞芬太尼抗肝脏缺血-再灌注损伤中的作用研究 [J]. 器官移植, 2024, 15 (6):895-902.
16
Liu C, Cai B, Li D, et al. Wolf–Hirschhorn syndrome candidate 1 facilitates alveolar macrophage pyroptosis in sepsis-induced acute lung injury through NEK7-mediated NLRP3 inflammasome activation[J]. Innate Immun, 2021, 27(6): 437-447.
17
Chen L, Zhong X, Cao W, et al. JQ1 as a BRD4 inhibitor blocks inflammatory pyroptosis-related acute colon injury induced by LPS[J]. Front Immunol, 2021, 12:609319.
18
Teng Y, Li N, Wang Y, et al. NRF2 inhibits cardiomyocyte pyroptosis via regulating CTRP1 in sepsis-induced myocardial injury[J]. Shock, 2022, 57(4):590-599.
19
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J].Nature, 2015, 526(7575):666-671.
20
Xie D, Ouyang S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure[J]. Front Immunol, 2023, 14:1279264.
21
Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation[J]. J Cell Biol, 2016, 213(6):617-629.
22
Akiyama T, Shi CS, Kehrl JH. Cytochrome c negatively regulates NLRP3 inflammasomes[J]. PLoS One, 2016, 11(12):e0167636.
23
苏苗, 俞腾飞, 郭敏, 等. 肝细胞凋亡机制的研究进展[J]. 中国临床药理学杂志, 2015, 31(16):1684-1686.
24
文日, 张铁凝, 杨妮, 等. 细胞焦亡在脓毒症心肌抑制中的作用研究进展[J]. 中国当代儿科杂志, 2024, 26(7): 774-781.
25
Zhao H, Liu H, Yang Y, et al. The role of autophagy and pyroptosis in liver disorders[J]. Int J Mol Sci, 2022, 23(11):6208.
26
Lu N, Qin H, Meng Z, et al. Inhibiting apoptosis and GSDME-mediated pyroptosis attenuates hepatic injury in septic mice[J]. Arch Biochem Biophys, 2024, 754:109923.
27
柳沛林, 周军, 魏海梁, 等. 细胞焦亡在溃疡性结肠炎中的作用及中药治疗进展[J]. 世界中西医结合杂志, 2023, 18(11): 2327-2332.
28
Yang S, Zou Y, Zhong C, et al. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives[J]. Front Cell Dev Biol, 2025, 13:1522206.
29
叶方雄, 郭诚, 杨定平. 细胞焦亡在脓毒症相关急性肾损伤中的研究进展[J]. 医学研究杂志, 2024, 53(5):171-174,124.
30
Koh EH, Yoon JE, Ko MS, et al. Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis[J]. Gut, 2021, 70(10):1954-1964.
31
Meng Z, Gao M, Wang C, et al. Apigenin alleviated high-fat-diet-induced hepatic pyroptosis by mitophagy-ROS-CTSB-NLRP3 pathway in mice and AML12 cells[J]. J Agric Food Chem, 2023, 71(18):7032-7045.
32
Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis[J]. J Hepatol, 2021, 74(1):156-167.
33
Zhao Q, Dai M Y, Huang R Y, et al. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice[J]. Nat Commun, 2023, 14(1):1829.
34
关海梅, 曾阳玲, 王恬雯, 等. GSDMD介导的肝细胞焦亡在急性肝衰竭中的致病机制[J]. 海南医学院学报, 2024, 30(9):700-706.
35
Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis[J]. Cell Mol Life Sci, 2019, 76(11):2031-2042.
36
Sun Y W, Zhao B W, Li H F, et al. Overview of ferroptosis and pyroptosis in acute liver failure[J]. World J Gastroenterol, 2024, 30(34): 3856-3861.
37
Yu M, Zheng C, Li X, et al. Neutrophil extracellular traps-induced pyroptosis of liver sinusoidal endothelial cells exacerbates intrahepatic coagulation in cholestatic mice[J]. Biochim Biophys Acta (BBA) - Mol Basis Dis, 2025, 1871(3):167700.
38
Weinhage T, Wirth T, Schütz P, et al. The receptor for advanced glycation endproducts (RAGE) contributes to severe inflammatory liver injury in mice[J]. Front Immunol, 2020, 11:1157.
39
Fang L, Song Y, Chen J, et al. The dual role of neutrophils in sepsis-associated liver injury[J]. Front Immunol, 2025, 16:1538282.
40
Gan C, Cai Q, Tang C, et al. Inflammasomes and pyroptosis of liver cells in liver fibrosis[J]. Front Immunol, 2022, 13:896473.
41
Xie Z yu, Xu Y xiao, Yao L. Angiotensin Ⅱ can trigger HSC-LX2 pyroptosis through both classical and non-classical pathways[J]. Life Sci, 2022, 307:120878.
42
Yu Z, Xie X, Su X, et al. ATRA-mediated-crosstalk between stellate cells and Kupffer cells inhibits autophagy and promotes NLRP3 activation in acute liver injury[J]. Cell Signal, 2022, 93:110304.
43
Wang X, Guo Z, Xia Y, et al. Research progress on the immune function of liver sinusoidal endothelial cells in sepsis[J]. Cells, 2025, 14(5):373.
44
Xu W, Wang Y, Cui S, et al. Methylcobalamin protects against liver failure via engaging gasdermin E[J]. Nat Commun, 2025, 16(1):1233.
45
Wang Z, Yang X, Wang X, et al. Glycyrrhizin attenuates caspase-11-dependent immune responses and coagulopathy by targeting high mobility group box 1[J]. Int Immunopharmacol, 2022, 107:108713.
46
Zhang B, Xu D, She L, et al. Silybin inhibits NLRP3 inflammasome assembly through the NAD(+)/SIRT2 pathway in mice with nonalcoholic fatty liver disease[J]. Faseb J, 2018, 32(2):757-767.
47
Guo W, Chen S, Li C, et al. Application of disulfiram and its metabolites in treatment of inflammatory disorders[J]. Front Pharmacol, 2021, 12:795078.
48
Kai J, Yang X, Wang Z, et al. Oroxylin a promotes PGC-1α/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease[J]. Free Radic Biol Med, 2020, 153:89-102.
49
Zhang Q, Hu J, Mao A, et al. Ginsenoside Rb1 alleviated concanavalin A-induced hepatocyte pyroptosis by activating mitophagy[J]. Food Funct, 2023, 14(8):3793-3803.
50
Qu J, Yuan Z, Wang G, et al. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice[J]. Int Immunopharmacol, 2019, 70:147-155.
51
Xiao L, Qi L, Zhang G, et al. Polygonatum sibiricum polysaccharides attenuate lipopoly-saccharide-induced septic liver injury by suppression of pyroptosis via NLRP3/GSDMD signals[J]. Molecules, 2022, 27(18):5999.
52
Chen S yuan, Li Y ping, You Y ping, et al. Theaflavin mitigates acute gouty peritonitis and septic organ injury in mice by suppressing NLRP3 inflammasome assembly[J]. Acta Pharmacol Sin, 2023, 44(10):2019-2036.
53
Zhou M, Cao Y, Xie S, et al. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways[J]. Int Immunopharmacol, 2024, 131:111872.
54
Kuang G, Zhao Y, Wang L, et al. Astragaloside Ⅳ alleviates acute hepatic injury by regulating macrophage polarization and pyroptosis via activation of the AMPK/SIRT1 signaling pathway[J]. Phytother Res, 2025, 39(2):733-746.
55
Wang Y, Liu F, Liu M, et al. Curcumin mitigates aflatoxin B1-induced liver injury via regulating the NLRP3 inflammasome and Nrf2 signaling pathway[J]. Food Chem Toxicol, 2022, 161:112823.
56
Zhang H, Du Y, Guo Y, et al. TLR4-NLRP3-GSDMD-mediated pyroptosis plays an important role in aggravated liver injury of CD38-/- sepsis mice[J]. J Immunol Res, 2021, 2021:1-15.
57
Zhao YY, Wu DM, He M, et al. Samotolisib attenuates acute liver injury through inhibiting caspase-11-mediated pyroptosis via regulating E3 ubiquitin ligase Nedd4[J]. Front Pharmacol, 2021, 12:726198.
58
Francis MR, El-Sheakh AR, Suddek GM. Saroglitazar, a dual PPAR-α/γ agonist, alleviates LPS-induced hepatic and renal injury in rats[J]. Int Immunopharmacol, 2023, 115:109688.
59
Liu J, Hu J, Yao X, et al. CLICs inhibitor IAA94 alleviates inflammation and injury in septic liver by preventing pyroptosis in macrophages[J]. Inflammation, 2025.
60
Qassam H, Janabi AM, Gaen KK, et al. Dimethyl fumarate attenuates liver injury in a mouse model of cecal ligation and puncture by modulating inflammatory, angiogenic and pyroptotic pathways[J]. BMC Pharmacol Toxicol, 2025, 26(1):134.
61
Mukhopadhyay P, Xu Z, Mu S, et al. Estrogen protects against liver damage in sepsis through inhibiting oxidative stress mediated activation of pyroptosis signaling pathway[J]. PLoS One, 2020, 15(10):e0239659.
62
Pai MH, Wu JM, Yang PJ, et al. Antecedent dietary glutamine supplementation benefits modulation of liver pyroptosis in mice with polymicrobial sepsis[J]. Nutrients, 2020, 12(4):1086.
63
Li Q wei, Yang Q, Liu HY, et al. Protective role of coenzyme Q10 in acute sepsis-induced liver injury in BALB/c mice[J]. Biomed Res Int, 2020, 2020(1):7598375.
64
Li Q, Tan Y, Chen S, et al. Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-κB signaling[J]. J Recept Signal Transduct, 2020, 41(3):294-303.
65
Zhou P, Yang L, Li R, et al. IRG1/itaconate alleviates acute liver injury in septic mice by suppressing NLRP3 expression and its mediated macrophage pyroptosis via regulation of the Nrf2 pathway[J]. Int Immunopharmacol, 2024, 135:112277.
66
Yin Y, Tang L, Liu K, et al. Attenuation of lipopolysaccharide-induced liver injury by bone marrow mesenchymal stem cells via inhibiting the NLRP3 inflammasome and hepatocyte pyroptosis[J]. Curr Stem Cell Res Ther, 2022, 17(4):361-369.
67
Yuan G, Qiao Q, Jiang A, et al. LPS-induced extracellular AREG triggers macrophage pyroptosis through the EGFR/TLR4 signaling pathway[J]. Front Immunol, 2025, 16:1549749.
68
Korthuis RJ, Gong G, Xiang L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats[J]. PLoS One, 2014, 9(3):e89450.
69
王瑞华, 黄兰蔚, 徐列明, 等. 护肝片对非酒精性脂肪性肝病小鼠细胞自噬、焦亡和PI3K/Akt/mTOR信号通路的影响[J]. 中成药, 2025, 47(3):766-773.
70
Qiao G, Li P, Wang M, et al. Therapeutic approaches for liver fibrosis/cirrhosis by targeting pyroptosis[J]. Open Life Sci, 2025, 20(1):20251092.
71
Yu X, Hao M, Liu Y, et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy[J]. Eur J Pharmacol, 2019, 864:172715.
72
Mai W, Xu Y, Xu J, et al. Berberine inhibits nod-like receptor family pyrin domain containing 3 inflammasome activation and pyroptosis in nonalcoholic steatohepatitis via the ROS/TXNIP axis[J]. Front Pharmacol, 2020, 11:185.
73
Gautheron J, Gores GJ, Rodrigues CMP. Lytic cell death in metabolic liver disease[J]. J Hepatol, 2020, 73(2):394-408.
[1] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[2] 张巍, 邵明亮, 孙建华, 戴世荣, 吴金娜. 结肠癌脓毒症患者外周血单个核细胞整合素αL甲基化特征[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(05): 271-278.
[3] 钱何布, 朱林, 姚月平, 姚峰, 李玉卓, 马家驹, 晏倩, 倪晓艳. 应用机器学习建立脓毒性休克患者住院28天死亡预测模型及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(05): 288-297.
[4] 王嘉民, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第27期)——肾移植术后原发膀胱癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 809-814.
[5] 胡群, 郭枫, 陈丹丹, 王钧, 吴斌. 呋喃唑酮致间质性肺疾病3例临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 1002-1006.
[6] 曾锐. 抑制急性肾损伤向慢性肾脏病转化:靶向致病性肾脏巨噬细胞纳米药物的应用[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 241-247.
[7] 李恺, 敖强国, 陶亚茹, 李青霖. 脓毒症相关急性肾损伤患者临床特点及90天预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 248-253.
[8] 张英杰, 刘彦宏, 樊玥芸, 全正扬, 刘娇娜, 沈婉君, 吕强, 黄梦杰, 张金凤. 利用纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 288-293.
[9] 张客松, 侯卫坤, 宇文星, 鲁超. 氨甲环酸和氨基己酸在全膝关节置换术围手术期止血效果和药物安全性对比[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 321-328.
[10] 田俊超, 冯美静, 王惠惠, 张鸿雁, 刘毅. 抗血小板药物重启时机对消化性溃疡出血合并冠心病患者再出血与心脑血管事件风险的影响[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 583-589.
[11] 何承志, 张小燕, 郜恒骏. 幽门螺杆菌对六种抗生素的耐药基因测序结果分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 604-609.
[12] 李怡, 范学科. 消化内镜围术期抗血栓药物管理:指南共识与实践进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 705-713.
[13] 周懿, 黄容华, 刘政疆. 5-羟色胺与铁死亡介导的脓毒症心肌病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 612-617.
[14] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
[15] 张伟东, 刘思婷, 黄蝶, 李永宁. 细胞焦亡介导脑梗死及脑缺血再灌注后脑组织损伤[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 519-525.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?