切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (06) : 321 -328. doi: 10.3877/cma.j.issn.2095-1221.2025.06.001

论著

大鼠羊膜间充质干细胞对STZ损伤的大鼠胰岛修复作用研究
崔琳琳1,2, 薛来恩1,2, 付云烽1,2, 王君竹1,2, 郑和平1,2, 路君1,2, 徐永君1,2,()   
  1. 1350025 福州,福建医科大学福总临床医学院福建省移植生物学重点实验室
    2350025 福州,联勤保障部队第九〇〇医院基础医学实验室
  • 收稿日期:2025-07-22 出版日期:2025-12-01
  • 通信作者: 徐永君
  • 基金资助:
    省部级实验动物专项(SYDW_KY[2021]11); 联勤保障部队第九〇〇医院院内课题(2022ZL06)

Study on the repair effect of rat amniotic mesenchymal stem cells on STZ-induced pancreatic islet injury in rats

linlin Cui1,2, laien Xue1,2, yunfeng Fu1,2, junzhu Wang1,2, heping Zheng1,2, jun Lu1,2, yongjun Xu1,2,()   

  1. 1Fujian Key Laboratory of Transplantation Biology, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
    2Department of Basic Medical Laboratory, 900th Hospital of the Joint Logistics Support Force, PLA, Fuzhou 350025, China
  • Received:2025-07-22 Published:2025-12-01
  • Corresponding author: yongjun Xu
引用本文:

崔琳琳, 薛来恩, 付云烽, 王君竹, 郑和平, 路君, 徐永君. 大鼠羊膜间充质干细胞对STZ损伤的大鼠胰岛修复作用研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 321-328.

linlin Cui, laien Xue, yunfeng Fu, junzhu Wang, heping Zheng, jun Lu, yongjun Xu. Study on the repair effect of rat amniotic mesenchymal stem cells on STZ-induced pancreatic islet injury in rats[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(06): 321-328.

目的

探讨大鼠羊膜间充质干细胞(R-AMSCs)对1型糖尿病(T1D)模型大鼠血糖和胰岛的影响。

方法

培养妊娠17 ~ 19 d大鼠胎盘来源的羊膜间充质干细胞(AMSCs),流式细胞检测干细胞表面标志物CD29、CD34、CD45和CD73,免疫荧光鉴定波形蛋白(Vimentin),三系分化(成骨、成脂、成软骨)实验鉴定其多向分化潜能。24只成年雄性SD大鼠随机分为对照组、T1D (模型)组和T1D+R-AMSCs (干预)组,每组8只。采用腹腔注射65 mg/kg链脲佐菌素诱导建立T1D模型,建模成功1周后,干预组经尾静脉注射5 × 106 R-AMSCs (每周1次,持续3周),对照组、模型组注射等体积PBS。干预结束2周后,异氟烷麻醉处死,收集血液及胰腺组织。检测各组大鼠血糖水平、血清胰岛素和C肽含量、胰腺组织病理变化、神经元素3、胰腺十二指肠同源盒因子1的mRNA和蛋白表达水平,分析R-AMSCs对T1D的治疗效果。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。重复测量设计定量资料采用重复测量设计方差分析,两两比较采用Bonferroni事后检验。

结果

采用酶消化法成功分离R-AMSCs,流式细胞、免疫荧光(波形蛋白Vimentin阳性)及三系分化诱导实验结果证实其具有干细胞特性。血糖检测结果显示,与模型组相比,干预组大鼠血糖水平降低(P < 0.05)。与对照组相比,模型组血清胰岛素水平[(5.48 ± 1.51)比(11.18 ± 2.42)mU/L]及C肽含量水平[(149.88 ± 14.19)比(199.35 ± 22.10)pg/mL]均降低(P均< 0.05),而与模型组相比,干预组血清胰岛素水平[(7.67 ± 1.33)比(5.48 ± 1.51) mU/L]及C肽含量水平[(176.04 ± 17.88)比(149.88 ± 14.19) pg/mL]升高(P均< 0.05)。胰腺组织HE染色显示,干预组胰腺形态结构和胰岛素表达较模型组改善。与对照组相比,模型组Ngn3 mRNA (0.57 ± 0.15比1.00 ± 0.18)及蛋白水平(0.80 ± 0.04比1.11 ± 0.08)、PDX mRNA (0.47 ± 0.08比1.00 ± 0.11)及蛋白水平(0.84 ± 0.13比1.19 ± 0.06)降低(P均< 0.05)。与模型组相比,干预组Ngn3 mRNA (0.87 ± 0.06比0.57 ± 0.15)及蛋白表达(1.03 ± 0.11比0.80 ± 0.04)、PDX-1 mRNA (0.71 ± 0.14比0.47 ± 0.08)及蛋白表达(1.12 ± 0.11比0.84 ± 0.13)增加(P均< 0.05)。

结论

R-AMSCs治疗3周可有效降低T1D模型大鼠血糖水平,改善胰腺病理形态并上调胰腺关键转录因子Ngn3和PDX-1表达以及血清胰岛素、C肽水平,表明其对T1D具有一定的治疗作用。

Objective

To investigate the effects of rat amniotic mesenchymal stem cells (R-AMSCs) on blood glucose and pancreatic tissue in type 1 diabetes (T1D) model rats.

Methods

Amniotic mesenchymal stem cells (AMSCs) were isolated from the placentas of pregnant rats at 17-19 days of gestation. Flow cytometry was used to detect the expressions of stem cell surface markers (CD29, CD34, CD45, CD73), immunofluorescence was performed to identify vimentin expression, and trilineage differentiation (osteogenic, adipogenic, chondrogenic) was induced to evaluate the multipotency. Twenty-four adult male SD rats were randomly divided into three groups (n = 8 per group), which named control, T1D (model), and T1D + R-AMSCs (intervention) respectively. The T1D model was established by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). One week after successful modeling, the rats in intervention group were received tail vein injections of 5 × 106 R-AMSCs (once per week for 3 weeks), while the control and model groups received equal volumes of PBS. 2 weeks after the intervention, blood and pancreatic tissue were collected after anesthesia with isoflurane. The expression levels of blood glucose, serum insulin and C-peptide, the pathological changes of pancreatic tissue, as well as the expression levels of mRNA and protein of Neurogenin 3 (Ngn3) and pancreatic and duodenal homeobox 1 (PDX-1) were measured to evaluate the therapeutic effects of R-AMSCs. The differences among multiple groups were compared with ANOVA test, and the LSD-t test was used for pairwise comparisons between groups. Repeated measures design quantitative data were analyzed using repeated measures design analysis of variance, and pairwise comparisons were conducted using Bonferroni post hoc tests.

Results

R-AMSCs were successfully isolated using enzymatic digestion. Flow cytometry, immunofluorescence (vimentin-positive), and trilineage differentiation confirmed their stem cell characteristics. Blood glucose levels were significantly lower in the intervention group compared to the model group (P < 0.05). Compared with the control group, the level of serum insulin [ (5.48 ± 1.51) vs (11.18 ± 2.42) mU/L] and C-peptide levels in model group were decreased significantly [ (149.88 ± 14.19) vs (199.35 ± 22.10) pg/mL] (P < 0.05). In contrast, the levels of serum insulin [ (7.67 ± 1.33) vs (5.48 ± 1.51) mU/L] and C-peptide levels [ (176.04 ± 17.88) vs (149.88 ± 14.19) pg/mL] in the intervention group were significant higher compared to the model group (P < 0.05). HE staining of pancreatic tissue showed that the pancreatic morphologtical structure and insulin expression in the intervention group were improved compared to the model group. Compared with the control group, the expression level of Ngn3 mRNA (0.57 ± 0.15 vs 1.00 ± 0.18), protein (0.80 ± 0.04 vs 1.11 ± 0.08) as well as PDX mRNA (0.47 ± 0.08 vs 1.00 ± 0.11), protein (0.84 ± 0.13 vs 1.19 ± 0.06), mRNA and protein were significant lower than those in model group (all P < 0.05). Compared with the model group, the expression levels of Ngn3 mRNA (0.87 ± 0.06 vs 0.57 ± 0.15) and protein (1.03 ± 0.11 vs 0.80 ± 0.04), as well as PDX-1 mRNA (0.71 ± 0.14 vs 0.47 ± 0.08) and protein (1.12 ± 0.11 vs 0.84 ± 0.13) in the intervention group were increased (all P < 0.05) .

Conclusion

Three weeks of R-AMSCs treatment could reduce the blood glucose levels effectively, improve the pathological morphology of the pancreas, and up-regulate the expression of key pancreatic transcription factors (Ngn3 and PDX-1) as well as serum insulin and C-peptide levels in T1D model rats, indicating a potential therapeutic effect of R-AMSCs on T1D.

表1 引物序列信息
图1 大鼠羊膜间充质干细胞的生长形态、分化能力及波形蛋白表达鉴定注:a图为P3代R-AMSCs的形态(×100);b图为茜素红染色(×200);c图为阿利新蓝染色(×200);d图为油红O染色(×200);e图为免疫荧光检测Vimentin表达
图2 大鼠羊膜间充质干细胞流式细胞鉴定注:a ~ d图为R-AMSCs阳性标志物表达分析;e ~ h图为R-AMSCs阴性表面标志物分析
图3 T1D大鼠模型构建、R-AMSCs治疗后血糖变化及大鼠胰腺免疫组化insulin表达情况注:a ~ d图为大鼠胰腺免疫组化检测insulin表达情况;e图为大鼠注射STZ后血糖变化情况;f图为R-AMSCs治疗后血糖变化情况;与对照组比较,*P < 0.05,**P < 0.01,***P < 0.001
图4 T1D模型大鼠及R-AMSCs治疗后胰腺病理变化注:a ~ c图为大鼠胰腺HE染色(×100),图中红色箭头代表胰岛组织萎缩、变小、结构不规则,出现轻微坏死,胰岛周围有少量炎细胞浸润;d ~ f图为大鼠胰腺Masson染色(×100)
图5 各组胰腺组织Ngn3、PDX-1的mRNA和蛋白表达水平及血清胰岛素和C肽含量注:a ~ b图为胰腺组织Ngn3、PDX-1的mRNA表达情况;c图为胰腺组织Ngn3、PDX-1的蛋白表达情况;d ~ e图为血清胰岛素和C肽含量。*P < 0.05
1
Zorena K, Michalska M, Kurpas M, et al. Environmental factors and the risk of developing type 1 diabetes-old disease and new data[J]. Biology, 2022, 11(4):608.
2
Biondi G, Marrano N, Borrelli A, et al. The p66Shc redox protein and the emerging complications of diabetes[J]. Int J Mol Sci, 2023, 25(1):108.
3
Nguyen Thi YV, Ho TT, Caglayan S, et al. RNA therapeutics for treatment of diabetes[J]. Prog Mol Biol Transl Sci, 2024, 203:287-300.
4
Li LY, Li JC, Guan HF, et al. Human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications: applications and research advances[J]. Int J Med Sci, 2023, 20(11):1492-1507.
5
Schreiber V, Mercier R, Jiménez S, et al. Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network[J]. Mol Metab202153:101313.
6
Zhu X, Oguh A, Gingerich MA, et al. Cell cycle regulation of the Pdx1 transcription factor in developing pancreas and insulin-producing β-cells[J]. Diabetes, 2021, 70(4):903-916.
7
Nasteska D, Fine NHF, Ashford FB, et al. PDX1LOW MAFALOW β-cells contribute to islet function and insulin release[J]. Nat Commun, 2021,12(1):674.
8
Manea T, Nelson JK, Garrone CM, et al. USP7 controls NGN3 stability and pancreatic endocrine lineage development[J]. Nat Commun, 2023, 14(1):2457.
9
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1[J]. J Biol Chem, 2022, 298(12):102623.
10
Maestas MM, Bui MH, Millman JR. Recent progress in modeling and treating diabetes using stem cell-derived islets[J]. Stem Cells Transl Med, 2024, 13(10):949-958.
11
Li ZT, Wang YM, Wang H, et al. Self-assembled DNA composite-engineered mesenchymal stem cells for improved skin-wound repair[J]. Small, 2024, 20(31):e2310241.
12
Aly RM, Aglan HA, Eldeen GN, et al. Optimization of differentiation protocols of dental tissues stem cells to pancreatic β-cells[J]. BMC Mol Cell Biol, 2022, 23(1):41.
13
Gribben C, Lambert C, Messal HA, et al. Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas[J]. Cell Stem Cell, 2021, 28(11):2000-2008.e4.
14
Yang L, Yu XX, Wang X, et al. The expression order determines the pioneer functions of NGN3 and NEUROD1 in pancreatic endocrine differentiation[J]. Sci Adv, 2025, 11(13):eadt4770.
15
Izadi M, Anavasadat SHN, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase Ⅰ/Ⅱ randomized placebo-controlled clinical trial[J]. Stem Cell Res Ther, 2022, 13(1):1-20.
16
Liu J, Wan XX, Zheng SY, et al. Mesenchymal stem cell transplantation in type 1 diabetes treatment:\ncurrent advances and future opportunity[J]. Curr Stem Cell Res Ther, 2024, 19(9):1175-1184.
17
Isildar B, Ozkan S, Ercin M, et al. 2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration[J]. Inflamm Regen, 2022, 42(1):55.
18
Cho G, Hyun K, Choi J, et al. Arginine 65 methylation of Neurogenin 3 by PRMT1 is required for pancreatic endocrine development of hESCs[J]. Exp Mol Med, 2023, 55(7):1506-1519.
19
Dai P, Qi G, Xu H, et al. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus[J]. Stem Cell Res Ther, 2022, 13(1):370.
20
Chen C, Yu G, Huang Y, et al. Genetic-code-expanded cell-based therapy for treating diabetes in mice[J]. Nat Chem Biol, 2022;18(1):47-55.
21
Mohan R, Jo S, Lockridge A, et al. OGT regulates mitochondrial biogenesis and function via diabetes susceptibility gene pdx1[J]. Diabetes, 2021, 70(11):2608-2625.
22
Yang J, Liu Y, Deng GD, et al. Thermosensitive and injectable chitosan-based hydrogel embedding umbilical cord mesenchymal stem cells for β-cell repairing in type 2 diabetes mellitus[J]. Int J Biol Macromol, 2024, 279(Pt 4):135546.
23
Sood V, Ricioli H, Njoku GC, et al. Adipose-derived mesenchymal stromal/stem cells in type 1 diabetes treatment[J]. Commun Biol, 2025, 8(1):1094.
24
Li S, Wang Y, Wang Z, et al. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis[J]. Stem Cell Res Ther, 2021, 12(1):27.
25
Dobosz AM, Janikiewicz J, Krogulec E, et al. Inhibition of stearoyl-CoA desaturase 1 in the mouse impairs pancreatic islet morphogenesis and promotes loss of β-cell identity and α-cell expansion in the mature pancreas[J]. Mol Metab, 2023, 67:101659.
[1] 费扬, 孙丽琴, 楼琴华, 张芳英, 胡骏程, 任梦, 徐晓艳, 李龙飞. 基于新型复合量表的家庭管理模式对糖尿病患者血糖控制的影响[J/OL]. 中华危重症医学杂志(电子版), 2022, 15(02): 131-134.
[2] 祝秋萍, 张琴, 潘建, 宋聪颖. 老年2型糖尿病患者骨骼肌质量的检测分析[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(02): 133-136.
[3] 王凌飞, 张耀东, 卫海燕. 维生素D受体基因BsmⅠ位点多态性与儿童1型糖尿病发生的Meta分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2013, 09(03): 357-360.
[4] 冯颖, 祝红娟, 王倩, 褚万立. 糖尿病足患者血糖管理的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(05): 445-448.
[5] 黄孝伦. 胰岛移植治疗1型糖尿病的进展与挑战[J/OL]. 中华移植杂志(电子版), 2017, 11(03): 138-142.
[6] 胡启桢, 张梅. 胰腺或胰岛移植后1型糖尿病复发的预测[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 364-367.
[7] 赵琳, 张涛, 迟静薇, 李勇, 王韵阳, 吕文山, 王伟, 王颜刚. 人脐带间充质干细胞对1型糖尿病鼠肝脏损伤的保护作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 18-22.
[8] 叶楠, 程虹. 钠-葡萄糖共转运体2抑制剂对血糖的控制及心肾保护作用[J/OL]. 中华肾病研究电子杂志, 2020, 09(01): 12-16.
[9] 吴丽滢, 陈广树, 熊晓清, 冉建民. SARS-CoV-2感染后诱发暴发性1型糖尿病合并多器官损害一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 109-112.
[10] 王继花, 杨秋萍, 鞠海兵, 于南南, 周红坚, 杨怡. 云南5家三甲医院老年2型糖尿病患者血糖控制现状及影响因素[J/OL]. 中华临床医师杂志(电子版), 2019, 13(02): 116-119.
[11] 朱志宏, 蔡钰玫, 陈语, 陈立曙, 陈式仪, 陈慎仁. 1型糖尿病患者血清髓源性免疫抑制细胞与免疫球蛋白G4的意义及关系[J/OL]. 中华临床医师杂志(电子版), 2018, 12(10): 567-570.
[12] 邹志伟, 周晓君, 赵军玉, 张瑞, 许春梅, 张倩, 廖琳, 董建军. 新发1型糖尿病患者自体造血干细胞免疫移植治疗有效性的荟萃分析[J/OL]. 中华临床医师杂志(电子版), 2018, 12(08): 477-482.
[13] 樊宗山, 赵凤琼, 黄海, 万宇, 胡燕君, 曹乐薇. 健康信念与家庭功能对老年糖尿病视网膜病变患者血糖控制的影响[J/OL]. 中华老年病研究电子杂志, 2022, 09(01): 24-27.
[14] 邓琳玲, 谢云亮, 杨旸, 李玉, 夏晓英, 李枢. 探讨血糖一体化管理在行脊柱微创手术合并糖尿病患者围手术期的血糖控制效果[J/OL]. 中华肥胖与代谢病电子杂志, 2022, 08(01): 41-45.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?