切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 275 -282. doi: 10.3877/cma.j.issn.2095-1221.2025.05.003

所属专题: 文献

论著

基于单细胞测序和微阵列芯片数据识别溃疡性结肠炎的治疗靶点及分子亚型
邓晓冬1,(), 杨育辉1, 曾笛2, 万瑜2, 罗凯菲1, 罗榆凌1   
  1. 1511400,广州医科大学附属番禺中心医院药剂科
    2511400,广州医科大学附属番禺中心医院消化内科
  • 收稿日期:2025-05-14 出版日期:2025-10-01
  • 通信作者: 邓晓冬
  • 基金资助:
    番禺区科技计划项目(PY-SQ-2023-0404)

Identifying therapeutic targets and molecular subtypes of ulcerative colitis based on single-cell sequencing and microarray data

Xiaodong Deng1,(), Yuhui Yang1, Di Zeng2, Yu Wan2, Kaifei Luo1, Yuling Luo1   

  1. 1Department of Pharmacy, Panyu Central Hospital, Guangzhou Medical University, Guangzhou 511400, China
    2Department of Gastroenterology, Panyu Central Hospital, Guangzhou Medical University, Guangzhou 511400, China
  • Received:2025-05-14 Published:2025-10-01
  • Corresponding author: Xiaodong Deng
引用本文:

邓晓冬, 杨育辉, 曾笛, 万瑜, 罗凯菲, 罗榆凌. 基于单细胞测序和微阵列芯片数据识别溃疡性结肠炎的治疗靶点及分子亚型[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 275-282.

Xiaodong Deng, Yuhui Yang, Di Zeng, Yu Wan, Kaifei Luo, Yuling Luo. Identifying therapeutic targets and molecular subtypes of ulcerative colitis based on single-cell sequencing and microarray data[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(05): 275-282.

目的

基于单细胞测序与微阵列芯片数据,系统探索溃疡性结肠炎(UC)的潜在治疗靶点及分子亚型特征,为疾病分型与个体化治疗提供分子依据。

方法

从GEO数据库获取UC相关单细胞测序数据集GSE182270,选取3例UC样本与3例正常样本进行质量控制与分析,识别并注释12个细胞亚群。基于各亚群差异表达基因(DEGs)并结合炎症因子基因集筛选关键基因。随后下载并整合转录组数据集GSE75214与GSE87473,共包含203例UC样本与32例正常样本。利用sva包去除批次效应,limma包进行标准化处理,构建统一的UC表达矩阵。通过一致性聚类识别UC分子亚型,并采用主成分分析(PCA)验证亚型间的差异。免疫组化验证关键基因在UC样本中的表达。连续变量比较采用配对t检验,非正态分布变量采用Wilcoxon符号秩检验,多组间比较分析采用单因素方差分析。

结果

共筛选出17个在UC样本中上调的关键基因(P < 0.05),包括CCL2、CCL20、CD14、CD48、CD69、CXCL10、F3、GPR183、IL-1β、IL7R、CXCL8、LCK、NAMPT、NFKBIA、PDPN、PLAUR、TIMP1。PCA显示,基于关键基因的一致性聚类能够有效区分不同UC分子亚型。HLA家族基因(HLA-B、HLA-C、HLA-DMA、HLA-DMB、HLA-DPA1、HLA-DQB1、HLA-F等17个)及37个免疫检查点基因在亚型4中表达升高,而HHLA2在亚型3中高表达(P < 0.05)。上述差异表达提示不同亚型存在免疫微环境特征差异。免疫组化显示,与对照组比较,3个核心基因编码的蛋白IL-1β,TIMP1和HLA-F在UC组中表达升高。

结论

整合单细胞测序与转录组数据揭示,HLA家族及免疫检查点基因的差异表达可反映UC的分子亚型特征。IL-1β,TIMP1和HLA-F等基因在UC中具有重要的致病与调控作用,可能作为潜在的分子靶点,为UC的精准分型与个体化治疗提供新的生物学依据。

Objective

To systematically explore potential therapeutic targets and molecular subtype characteristics of ulcerative colitis (UC) by integrating single-cell RNA sequencing (scRNA-seq) and microarray data, providing a molecular basis for disease subtyping and personalized treatment.

Methods

The scRNA-seq dataset GSE182270, including 3 UC samples and 3 normal samples, was obtained from the GEO database. After quality control, 12 cell subpopulations were identified and annotated. Key genes were screened based on differentially expressed genes (DEGs) from these subpopulations and an inflammation-related gene set. Subsequently, transcriptomic datasets GSE75214 and GSE87473, including 203 UC samples and 32 normal samples, were integrated. Batch effects were corrected using the sva package, and data were normalized using the limma package to construct a unified UC expression matrix. Molecular subtypes were identified via consensus clustering, with differences validated by principal component analysis (PCA). Immunohistochemistry (IHC) was employed to examine the expression of key genes in UC samples. Continuous variables were compared using paired t-tests, non-normally distributed variables were analyzed using Wilcoxon signed-rank tests, and differences among multiple groups were analyzed using one-way analysis of variance.

Results

Seventeen key genes (CCL2, CCL20, CD14, CD48, CD69, CXCL10, F3, GPR183, IL-1β, IL7R, CXCL8, LCK, NAMPT, NFKBIA, PDPN, PLAUR, TIMP1) were significantly upregulated in UC samples (P < 0.05). PCA confirmed that consensus clustering based on these key genes effectively distinguished distinct UC molecular subtypes. Seventeen HLA family genes (including HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DQB1) and 37 immune checkpoint genes was significantly overexpression in subtype 4, while HHLA2 was highly expressed in subtype 3 (P < 0.05), indicating distinct immune microenvironment features across subtypes. Elevated expression of the proteins (IL-1β, TIMP-1, and HLA-F) encoded by three hub genes was observed in the UC group compared to controls by immunohistochemistry.

Conclusion

The integration of scRNA-seq and transcriptomic data reveals that differential expression of HLA family and immune checkpoint genes defines molecular subtypes of UC. Key genes such as IL-1β, TIMP1 and HLA-F play significant pathogenic and regulatory roles and represent potential molecular targets, offering new biological insights for the precise subtyping and personalized treatment of UC.

图1 研究思路流程
图2 单细胞亚群marker基因在不同细胞簇之间表达情况注:a ~ l图分别为12个单细胞亚群marker基因在不同细胞簇之间表达情况的小提琴图,整体结果揭示这些基因在特定条件下的表达异质性
图3 单细胞数据中的细胞异质性及关键基因的鉴定注:a图为marker基因在不同细胞簇之间表达情况的气泡图(气泡由小到大代表细胞簇中基因表达比例由小到大,颜色由深到浅代表基因表达由强到弱);b图为5种细胞在UC样本中的Uniform Manifold Approximation and Projection (UMAP)聚类图;c图为细胞簇之间差异基因(top 20)热图(颜色由深到浅代表基因表达由强到弱);d图为425个scDEGs和200个IRGs取交集
图4 关键基因在单细胞数据集表达差异注:a图为关键基因在UC样本中的表皮细胞,CD4+ T细胞以及B细胞的表达情况热图(红色代表高表达,蓝色代表低表达);b图为关键基因在正常样本中的表皮细胞,CD4+ T细胞以及B细胞的表达情况(红色代表高表达,蓝色代表低表达);c图为关键基因在正常样本和UC样本的表达情况,*P < 0.05,**P < 0.01,***P < 0.001
图5 基于关键基因鉴定UC分子亚型注:a图为聚类热图;b图为聚类过程中CDF函数曲线图;c图为聚类过程中CDF变化图;d图为不同UC分子亚型的PCA分析结果
图6 HLA家族基因和免疫检查点基因在UC分子亚型的表达差异注:a图为HLA基因在UC分子亚型的表达差异箱线图;b、c图为免疫检查点基因在UC分子亚型的表达差异箱线图。*P < 0.05,** P < 0.01,***P < 0.001
图7 机器学习筛选核心基因及免疫组化实验验证注:a图为LASSO回归模型筛选核心基因;b图为随机森林算法筛选前10个核心基因,并按重要程度排序;c图为免疫组化实验结果标本中核心蛋白的平均光密度;与对照组相比,**P < 0.01,***P < 0.001;d图为光学显微镜下观察人UC组织石蜡切片IL-1β、TIMP1和HLA-F免疫组化显色结果(DAB染色×100)
1
He YX, Li YY, Wu YQ, et al. Huanglian ganjiang decoction alleviates ulcerative colitis by restoring gut barrier via APOC1-JNK/P38 MAPK signal pathway based on proteomic analysis[J]. J Ethnopharmacol, 2024, 318(Pt B):116994.
2
汪稳庚, 江燕, 何银环, 等. FOXP3表达及病理组织学特征在溃疡性结肠炎诊断和鉴别诊断中的作用[J]. 临床与实验病理学杂志, 2023, 39(7):807-810.
3
许冰, 唐玲, 李艳林, 等. 溃疡性结肠炎患者自我管理及自我效能的现状调查分析[J]. 中国临床医生杂志, 2022, 50(9):1062-1064.
4
曾婷婷, 朱卫. 基于IL33/ST2信号通路探究芍药汤对溃疡性结肠炎大鼠的干预效果[J]. 吉林中医药, 2022, 42(7):817-821.
5
Lin Z, Xu Q, Miao D, et al. An inflammatory response-related gene signature can impact the immune status and predict the prognosis of hepatocellular carcinoma[J]. Front Oncol, 2021, 11:644416.
6
Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230):56-61.
7
Ishida N, Ito T, Takahashi K, et al. Comparison of fecal calprotectin levels and endoscopic scores for predicting relapse in patients with ulcerative colitis in remission[J]. World J Gastroenterol, 2023, 29(47):6111-6121.
8
Magro F, Lopes J, Borralho P, et al. Comparison of the nancy index with continuous geboes score: histological remission and response in ulcerative colitis[J]. J Crohns Colitis, 2020, 14(7):1021-1025.
9
Huang M, Wu Y, Li Y, et al. Circadian clock-related genome-wide mendelian randomization identifies putatively genes for ulcerative colitis and its comorbidity[J]. BMC Genomics, 2024, 25(1):130.
10
Shibrya EE, Rashed RR, Abd El Fattah MA, et al. Apigenin and exposure to low dose gamma radiation ameliorate acetic acid-induced ulcerative colitis in rats[J]. Dose Response, 2023, 21(1):15593258231155787.
11
Giddings HL, Ng KS, Solomon MJ, et al. Population outcomes, trends and the future of pouch surgery for ulcerative colitis: a 19-year new south wales data linkage study[J]. ANZ J Surg, 2023, 93(11):2686-2696.
12
Osawa M, Handa O, Fukushima S, et al. Reduced abundance of butyric acid-producing bacteria in the ileal mucosa-associated microbiota of ulcerative colitis patients[J]. J Clin Biochem Nutr, 2023, 73(1):77-83.
13
Liu W, Jiang Q, Xue S, et al. Clinical characteristics of ulcerative colitis patients with different types of helicobacter pylori infection[J]. Microbiol Spectr, 2024, 12(5):e0355423.
14
Xu Y, Yang J, Chen X, et al. MicroRNA-182-5p aggravates ulcerative colitis by inactivating the wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation[J]. Genomics, 2022, 114(3):110360.
15
Kim BJ, Thiemann A, Dietz B, et al. Refractory ulcerative colitis with associated synovitis, acne, pustulosis, hyperostosis, osteitis syndrome successfully treated with tofacitinib[J]. ACG Case Rep J, 2024, 11(4): e01342.
16
van Lingen E, Nooij S, Terveer E, et al. Fecal microbiota transplantation engraftment after budesonide or placebo in patients with active ulcerative colitis using pre-selected donors: a randomized pilot study[J]. J Crohns Colitis, 2024, 18(9):1381-1393.
17
Dalal RS, Winter RW, Gupta S, et al. Clinical outcomes at 8-16 weeks after upadacitinib initiation for acute severe ulcerative colitis: a case series in the united states[J]. Inflamm Bowel Dis, 2024, 30(6):1042-1043.
18
张尔馨, 郝微微, 王珠环, 等. 青黛及其有效成分靛玉红通过NF-κB信号传导调控溃疡性结肠炎小鼠细胞焦亡的作用机制[J]. 中华中医药杂志, 2023, 38(10):4704-4710.
19
耿白璐, 郭静, 胡晓飞, 等. CD3+ HLA-DR+活化T淋巴细胞对溃疡性结肠炎患者疾病严重程度和药物疗效的预测价值[J]. 胃肠病学和肝病学杂志, 2023, 32(2):146-150.
20
Krausgruber T, Redl A, Barreca D, et al. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation[J]. Immunity, 2023, 56(2):289-306.e7.
21
Tran MT. Identification of TIMP1-induced dysregulation of epithelial-mesenchymal transition as a key pathway in inflammatory bowel disease and small intestinal neuroendocrine tumors shared pathogenesis[J]. Front Genet, 2024, 15:1376123.
[1] 郭伟仪, 林沛玲. 不同抗体型幽门螺杆菌感染与溃疡性结肠炎患者疾病活动及组织学评分的关系[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 237-244.
[2] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[3] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[6] 张广权, 洪生杰, 陈显育, 王继才, 翟航, 吴芬芳, 史宪杰. 生物信息学分析内质网应激相关基因在非酒精性脂肪性肝炎发病中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 761-769.
[7] 董晓斌, 张静, 苏莎莎, 莎比亚·沙吾提, 盛好. 溃疡性结肠炎患者相关环状RNA 差异表达谱分析及功能研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 499-509.
[8] 尚伟锋, 陈德昌. 基于肠道菌群探讨脓毒症相关脑病治疗的新靶点[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 31-35.
[9] 翟崟皓, 江学良. 重视肠道气体检测在溃疡性结肠炎中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 289-293.
[10] 李亚妮, 韩霜, 陈敏, 秦军胜. 溃疡性结肠炎患者粪便细菌与粪钙卫蛋白、全身免疫炎症指数、D-二聚体水平及疾病严重程度的相关性[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 179-184.
[11] 薛伟, 祝华, 贾涛. 经腹超声黏膜下层指数结合hs-CRP、IL-6、IL-8对溃疡性结肠炎患者早期治疗效果的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 55-59.
[12] 汪小琳, 廖娟, 冯声蓉, 王毅, 金碧, 黄银平. 经腹超声黏膜下层指数结合血液炎症检查对中重度溃疡性结肠炎患者治疗效果的评价[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 60-64.
[13] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[14] 靳寿璐, 刘军, 吴阳, 周倩, 陈洁. 溃疡性结肠炎的药物联合治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 145-149.
[15] 李波妮, 魏娟娟, 张翻翻. 白介素-6和补体1q对急性溃疡性结肠炎的诊断价值及其与肠道菌群的相关性分析[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 269-273.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?