切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 257 -265. doi: 10.3877/cma.j.issn.2095-1221.2025.05.001

论著

IFI6通过抑制凋亡促进肾细胞癌进展并增强舒尼替尼耐药
曹森明1,2, 陈欣然2,3, 张弛1,2, 冯毅2,3, 李修彬2, 樊文梅2, 马鑫1,2,()   
  1. 1300071 天津,南开大学医学院
    2100039 北京,中国人民解放军总医院泌尿外科医学部
    3100853 北京,解放军医学院
  • 收稿日期:2025-07-04 出版日期:2025-10-01
  • 通信作者: 马鑫
  • 基金资助:
    首都卫生发展科研专项(首发2024-1-5042)

IFI6 promotes the progression of renal cell carcinoma and enhances sunitinib resistance through apoptosis suppression

Senming Cao1,2, Xinran Chen2,3, Chi Zhang1,2, Yi Feng2,3, Xiubin Li2, Wenmei Fan2, Xin Ma1,2,()   

  1. 1School of Medicine, Nankai University, Tianjin 300071, China
    2Senior Department of Urology, Chinese PLA General Hospital, Beijing 100039, China
    3Medical School of Chinese People's Liberation Army, Beijing 100853, China
  • Received:2025-07-04 Published:2025-10-01
  • Corresponding author: Xin Ma
引用本文:

曹森明, 陈欣然, 张弛, 冯毅, 李修彬, 樊文梅, 马鑫. IFI6通过抑制凋亡促进肾细胞癌进展并增强舒尼替尼耐药[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 257-265.

Senming Cao, Xinran Chen, Chi Zhang, Yi Feng, Xiubin Li, Wenmei Fan, Xin Ma. IFI6 promotes the progression of renal cell carcinoma and enhances sunitinib resistance through apoptosis suppression[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(05): 257-265.

目的

探讨干扰素诱导蛋白6 (IFI6)在肾细胞癌(RCC)进展中的作用及其介导舒尼替尼(sunitinib)耐药的分子机制。

方法

基于TCGA数据库及临床样本,分析IFI6在RCC与癌旁组织中的表达差异。在人RCC细胞786-O、ACHN中,转染siRNA阴性对照(scramble)及IFI6 siRNA (siIFI6),采用CCK-8、Transwell实验比较对照组和敲低组的细胞增殖、迁移和侵袭功能变化;Western blot分析凋亡标志物变化(caspase3、cleaved caspase3、Bcl2、BAX)。检测sunitinib耐药株786-O-SuR中IFI6表达水平;分析IFI6敲低对sunitinib半数抑制浓度(IC50)的影响。通过构建IFI6敲低(shRNA)的OSRC-2稳定转染细胞系,进行裸鼠皮下成瘤实验,并结合sunitinib处理,以验证其在体内的效果。实验分为四组:scramble + DMSO组、shIFI6 + DMSO组、scramble + sunitinib组和shIFI6 + sunitinib组。两组间比较采用独立样本t检验,配对样本比较采用配对样本t检验,多组间比较采用单因素方差分析,组间两两比较采用Dunnett-t检验。

结果

与癌旁组织相比,癌组织中IFI6在RCC中高表达,且高表达患者预后不良(P < 0.05)。转染siIFI6后,与scramble组相比,siIFI6-1、siIFI6-2组的细胞增殖[786-O:(1.33 ± 0.11)、(1.24 ± 0.11)比(2.15 ± 0.15);ACHN:(2.03 ± 0.14)、(1.59 ± 0.14)比(3.05 ± 0.18)]减少,迁移[786-O:(169.67 ± 31.01)、(140.67 ± 19.40)比(371.67 ± 58.05)个;ACHN:(245.67 ± 33.25)、(177.33 ± 18.45)比(558.00 ± 83.83)个]及侵袭能力[786-O:(55.33 ± 9.07)、(46.67 ± 7.77)比(102.00 ± 8.54)个;ACHN:(43.33 ± 12.66)、(37.33 ± 11.93)比(118.00 ± 12.49)个]下降(P均< 0.05)。IFI6敲低导致cleaved caspase3与BAX表达升高,而总caspase3与Bcl2表达降低。与786-O细胞相比,786-O-SuR细胞中IFI6的mRNA和蛋白水平升高(P均< 0.05)。与scramble组相比,siIFI6-1、siIFI6-2组在786-O、ACHN和786-O-SuR细胞中sunitinib IC50浓度[786-O:(5.02 ± 0.15)、(4.40 ± 0.47)比(7.28 ± 0.28)μmol/L;ACHN:(4.56 ± 0.17)、(4.20 ± 0.19)比(6.68 ± 0.31) μmol/L;786-O-SuR:(8.02 ± 0.45)、(7.50 ± 0.49)比(16.61 ± 1.16) μmol/L]下降(P均< 0.05)。裸鼠体内成瘤实验显示:scramble + sunitinib组、shIFI6 + DMSO组较scramble + DMSO组肿瘤质量与体积[质量:(318.36 ± 40.81)、(308.54 ± 36.97)比(532.76 ± 79.59)mg,体积:(362.68 ± 58.76)、(349.96 ± 59.38)比(681.20 ± 150.85)mm3]减小(P均< 0.05),且shIFI6 + sunitinib组较scramble + sunitinib组[质量:(109.28 ± 34.43)比(318.36 ± 40.81)mg,体积:(112.04 ± 40.62)比(362.68 ± 58.76)mm3]进一步减小(P均< 0.05)。

结论

IFI6通过抑制凋亡促进RCC进展及sunitinib耐药,靶向IFI6可增强药物敏感性,本研究具有潜在临床转化价值。

Objective

To investigate the role of interferon-induced protein 6 (IFI6) in renal cell carcinoma (RCC) progression and the molecular mechanism in sunitinib resistance.

Methods

The differences of IFI6 expression between tumor and normal tissues were analyzed using TCGA data and clinical samples. The human RCC cells (786-O and ACHN) was transfected with either non-targeting siRNA control (scramble) or IFI6 siRNA (siIFI6). Cell proliferation, migration, and invasion were comparatively assessed between control and knockdown groups using CCK-8 and Transwell assays. Apoptosis-related proteins (caspase3、cleaved caspase3、Bcl2、BAX) were detected via Western blot. IFI6 expression was measured in sunitinib-resistant cells (786-O-SuR), and the changes in the half maximal inhibitory concentration (IC50) of sunitinib were evaluated after IFI6 knockdown. Stable OSRC-2 cell lines with IFI6 knockdown (shIFI6) were established, and a subcutaneous tumor xenograft model in nude mice was performed with sunitinib treatment to evaluate its in vivo efficacy. The experiment was divided into four groups: scramble + DMSO, shIFI6 + DMSO, scramble + sunitinib, and shIFI6 + sunitinib. Independent samples t-test was used for comparisons between two groups, and paired samples t-test was used for paired comparisons. For comparisons among three or more groups, one-way ANOVA was employed. Dunnett's t-test was used for pairwise comparison between groups.

Results

IFI6 was significantly upregulated in RCC tissues versus normal tissues (P < 0.05), with high expression correlating with poor prognosis (P < 0.05). IFI6 knockdown markedly suppressed the abilities of proliferation [786-O: (1.33 ± 0.11), (1.24 ± 0.11) vs (2.15 ± 0.15) ; ACHN: (2.03 ± 0.14), (1.59 ± 0.14) vs (3.05 ± 0.18) ; P < 0.05], migration [786-O: (169.67 ± 31.01), (140.67 ± 19.40) vs (371.67 ± 58.05) cells; ACHN: (245.67 ± 33.25), (177.33 ± 18.45) vs (558.00 ± 83.83) cells; P < 0.05], and invasion [786-O: (55.33 ± 9.07), (46.67 ± 7.77) vs (102.00 ± 8.54) cells; ACHN: (43.33 ± 12.66), (37.33 ± 11.93) vs (118.00 ± 12.49) cells; P < 0.05]. Knockdown of IFI6 led to an increased expression of cleaved caspase 3 and BAX, while the expression of total caspase 3 and Bcl2 was decreased. Compared with 786-O, the expression levels of IF16 mRNA and protein were elevated in 786-O-SuR (P < 0.05 for both). The IC50 concentration of sunitinib in the siIFI6-1 and siIFI6-2 groups was significantly lower than that in the Scramble group in 786-O, ACHN and 786-O-SuR cells [ 786-O: (5.02 ± 0.15), (4.40 ± 0.47) vs (7.28 ± 0.28) μmol/L; ACHN: (4.56 ± 0.17), (4.20 ± 0.19) vs (6.68 ± 0.31) μmol/L; 786-O-SuR: (8.02 ± 0.45), (7.50 ± 0.49) vs (16.61 ± 1.16) μmol/L; P < 0.05 for all ]. In vivo tumor formation experiments in nude mice revealed that, the tumor mass and volume in the Scramble + Sunitinib group and shIFI6 + DMSO group were significantly smaller than those in the Scramble + DMSO group [mass: (318.36 ± 40.81), (308.54 ± 36.97) vs (532.76 ± 79.59) mg, volume: (362.68 ± 58.76) and (349.96 ± 59.38) vs (681.20 ± 150.85) mm3; P < 0.05 for all], and the tumor mass and volume in the shIFI6 + Sunitinib group were further reduced compared with the Scramble + Sunitinib group [mass: (109.28 ± 34.43) vs (318.36 ± 40.81) mg, volume: (112.04 ± 40.62) vs (362.68 ± 58.76) mm3; P < 0.05 for all ].

Conclusion

This study reveals that IFI6 promotes RCC progression and confers sunitinib resistance by suppressing apoptosis. Targeting IFI6 sensitizes RCC to therapeutic agents, demonstrating potential clinical significance.

表1 引物序列信息
图1 IFI6在肾癌组织中高表达且提示不良预后注:a图为TCGA-KIRC队列中癌旁组织(72例)和肿瘤组织(533例)的IFI6基因表达水平;b图为TCGA-KIRC队列中71例配对的癌旁组织和肿瘤组织IFI6基因表达水平;c图为UALCAN网站中TCGA-KIRC队列的预后生存分析;d图为8例ccRCC患者临床样本的IFI6蛋白表达水平;e图为IFI6在肾小管上皮细胞系HK-2及肾癌细胞系中蛋白表达水平;*P < 0.05
图2 IFI6敲低抑制肾肿瘤细胞的增殖、迁移和侵袭能力注:a ~ b图为通过RT-qPCR实验检测786-O、ACHN细胞中IFI6的敲低效率;c ~ d图为通过Western-blot实验检测786-O、ACHN细胞中IFI6的敲低效率;e、f图为CCK-8实验及Transwell实验评估IFI6对786-O细胞的增殖、迁移和侵袭能力的影响(×100);g ~ h图为CCK-8实验及Transwell实验评估IFI6对ACHN细胞的增殖、迁移和侵袭能力的影响(×100);*P < 0.05
图3 IFI6敲低促进肾肿瘤细胞的凋亡注:a图为光学显微镜下观察敲低IFI6后786-O、ACHN细胞状态(×100);b图为通过Western-blot实验检测敲低IFI6后786-O、ACHN细胞的凋亡相关蛋白水平;c、d图为caspase3、cleaved Caspase3、Bcl2、BAX蛋白表达水平定量分析。*P < 0.05
图4 IFI6敲低促进肾肿瘤细胞对舒尼替尼药物的敏感性注:a ~ b图为RT-qPCR和Western-blot实验检测786-O、786-O-SuR细胞中IFI6 mRNA和蛋白表达水平,R代表重复;c ~ d图为RT-qPCR和Western-blot实验检测786-O-SuR细胞的IFI6敲低效率;e ~ g图为CCK8实验检测敲低IFI6后786-O、ACHN、786-O-SuR细胞的sunitinib IC50变化;h图为Western-blot实验检测敲低IFI6后786-O-SuR细胞的凋亡相关蛋白水平变化;*P < 0.05
图5 敲低IFI6和口服舒尼替尼药物后OS-RC-2细胞裸鼠皮下成瘤的质量、体积及体积变化注:a ~ b图为RT-qPCR实验检测OS-RC-2细胞的IFI6敲低效率,Western-blot实验检测凋亡相关蛋白水平变化;c图为正常视野下观察各组裸鼠皮下成瘤;d、e、f图分别为不同处理组裸鼠皮下成瘤的质量、体积以及体积变化曲线。*P < 0.05
1
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49.
2
Bex A, Ghanem YA, Albiges L, et al. European association of urology guidelines on renal cell carcinoma: the 2025 update[J]. Eur Urol, 2025, 87(6):683-696.
3
Shuch B, Amin A, Armstrong AJ, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity[J]. Eur Urol, 2015, 67(1):85-97.
4
李博,翟炜,郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL].中华腔镜泌尿外科杂志(电子版), 2025, 19(4):399-403.
5
Motzer RJ, Bukowski RM, Figlin A, et al. Prognostic nomogram for sunitinib in patients with metastatic renal cell carcinoma[J]. Cancer, 2008, 113(7):1552-1558.
6
Brown JE, Symeonides SN. Treatment strategies in metastatic renal cancer: dose titration in clear cell renal cell carcinoma[J]. Eur Urol, 2022, 82(3):293-294.
7
Motzer RJ, Mcdermott DF, Escudier B, et al. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma[J]. Cancer, 2022, 128(11):2085-2097.
8
Nerich V, Hugues M, Nai T, et al. Clinical impact of targeted therapies in patients with metastatic clear-cell renal cell carcinoma[J]. OncoTargets Ther, 2014, 7:365-374.
9
Capitanio U, Montorsi F. Renal cancer[J]. Lancet, 2016, 387(10021): 894-906.
10
潘成云, 王季石. 干扰素诱导蛋白6的研究进展[J]. 黑龙江医学, 2023, 47(7):890-892.
11
Liu J, Chen H, Qiao G, et al. PLEK2 and IFI6, representing mesenchymal and immune-suppressive microenvironment, predicts resistance to neoadjuvant immunotherapy in esophageal squamous cell carcinoma[J]. Cancer Immunol Immunother, 2022, 72(4):881-893.
12
Sui Y, Shen Z, Pan R, et al. AHSA1-HSP90AA1 complex stabilized IFI6 and TGFB1 promotes mitochondrial stability and EMT in EGFR-mutated lung adenocarcinoma under Osimertinib pressure[J]. Cell Death Dis, 2025, 16(1):298.
13
Viet-Nhi N-K, Minh Quan T, Cong Truc V, et al. Multi-omics analysis reveals the IFI6 gene as a prognostic indicator and therapeutic target in esophageal cancer[J]. Int J Mol Sci, 2024, 25(5):2691.
14
Yin X, Yang J, Chen J, et al. LncRNA CTD-3252C9.4 modulates pancreatic cancer cell survival and apoptosis through regulating IFI6 transcription[J]. Cancer Cell Int, 2021, 21(1):433.
15
Liu Z, Gu S, Lu T, et al. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress[J]. J Exp Clin Cancer Res, 2020, 39(1):144.
16
Cheriyath V, Kaur J, Davenport A, et al. G1P3 (IFI6), a mitochondrial localised antiapoptotic protein, promotes metastatic potential of breast cancer cells through mtROS[J]. Br J Cancer, 2018, 119(1):52-64.
17
Wong RS. Apoptosis in cancer: from pathogenesis to treatment[J]. J Exp Clin Cancer Res, 2011, 30(1):87.
18
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol, 2020, 17(7):395-417.
19
Elmore S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35(4):495-516.
20
古婉仪,杨毅. IFI6的研究现状[J]. 临床与病理杂志, 2015, 35(10): 1847-1851.
21
Jin X, Qi Y, Li Y, et al. IFI6 Inhibits apoptosis via mitochondrial- dependent pathway in dengue virus 2 infected vascular endothelial cells[J]. PLoS One, 2015, 10(8):e0138896.
22
Tahara E, Tahara H, Kanno M, et al. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell[J]. Cancer Immunol Immunother, 2005, 54(8):729-740.
23
Cheriyath V, Glaser KB, Waring JF, et al. G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells[J]. J Clin Invest, 2007, 117(10):3107-3117.
24
Tanaka K, Kandori S, Sakka S, et al. ELOVL2 promotes cancer progression by inhibiting cell apoptosis in renal cell carcinoma[J]. Oncol Rep, 2022, 47(2):23.
25
Wang Y, Peng M, Zhong Y, et al. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis[J]. Oncogene, 2023, 42(13):952-966.
26
Chen Y, Lu Z, Qi C, et al. N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma[J]. Mol Cancer, 2022, 21(1):111.
[1] 蒋树云, 马志军, 张旭, 陈棋帅, 耿智华贞. R-spondin 2在乳腺癌中的表达及其对SKBR-3细胞生长转移能力的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 267-274.
[2] 马小杰, 张贵慧, 李润泽, 王秋入, 陈带领, 马清伟, 张磊, 陈长军. 对硒代甲硫氨酸逆转糖皮质激素介导的成骨细胞凋亡和成骨阻抑治疗大鼠激素性股骨头坏死的机制探索[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 412-420.
[3] 蒲茜, 文曰, 卢春燕, 赵锐. 经肛门内镜微创手术治疗直肠肿瘤应用研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 698-700.
[4] 李婷婷, 李宏羽, 吴孟航. 肝动脉灌注化疗在不可切除肝细胞癌中的应用进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 705-708.
[5] 王小军, 蔡瑜, 安艳新, 刘斌, 冯永安. 完全腹腔镜远端胃癌根治术治疗局部进展期胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 509-512.
[6] 贾宇浩, 吕坤昱, 刘志强, 李保中. 不同入路腹腔镜辅助下根治性远端胃切除术治疗进展期远端胃癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 513-516.
[7] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[8] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[9] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[10] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[11] 王杰艳, 胡博文, 梁辉. 细胞死亡在肾缺血再灌注损伤中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 653-657.
[12] 刘国路, 李乾, 王以金, 王苏贵, 胡好, 张璐. 甘油三酯-葡萄糖指数与肾细胞癌患者术后预后的关系[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 492-497.
[13] 罗瑞翔, 周祥福. 肾门肿瘤的肾部分切除术的手术选择和技术改良[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 521-527.
[14] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[15] 程玉红, 杨雪, 李春飞, 代文静. 线粒体自噬调控特发性肺纤维化发生发展的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 833-836.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?