切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 11 -18. doi: 10.3877/cma.j.issn.2095-1221.2024.01.002

论著

miR-15a-5p靶向HPSE2促进宫颈癌细胞增殖、迁移和侵袭
蒋嫒1, 王红梅2, 孔祥3,()   
  1. 1. 225000 扬州,扬州大学医学院;224000 盐城,江苏省盐城市第三人民医院妇产科
    2. 224000 盐城,江苏省盐城市第三人民医院妇产科
    3. 225001 扬州,江苏省扬州市苏北人民医院妇产科
  • 收稿日期:2023-12-11 出版日期:2024-02-01
  • 通信作者: 孔祥

miR-15a-5p promotes the proliferation, migration and invasion of cervical cancer cells by targeting HPSE2

Ai Jiang1, Hongmei Wang2, Xiang Kong3,()   

  1. 1. Medical College of Yangzhou University, Yangzhou 225000, China; Department of Gynaecology and Obstetrics, Yancheng Third People's Hospital, Yancheng 224000, China
    2. Department of Gynaecology and Obstetrics, Yancheng Third People's Hospital, Yancheng 224000, China
    3. Department of Gynaecology and Obstetrics, Yangzhou Subei People's Hospital, Yangzhou 225001, China
  • Received:2023-12-11 Published:2024-02-01
  • Corresponding author: Xiang Kong
引用本文:

蒋嫒, 王红梅, 孔祥. miR-15a-5p靶向HPSE2促进宫颈癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 11-18.

Ai Jiang, Hongmei Wang, Xiang Kong. miR-15a-5p promotes the proliferation, migration and invasion of cervical cancer cells by targeting HPSE2[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(01): 11-18.

目的

探讨miR-15a-5p靶向乙酰肝素酶2 (HPSE2)对宫颈癌细胞增殖、迁移和侵袭的影响。

方法

以人宫颈癌细胞系(Hela和SIHA)为研究对象,将miR-15a-5p mimic,miR-15a-5p inhibitor和HPSE2质粒转染进入细胞。分别采用CCK-8检测细胞活力,划痕实验和Transwell实验分别检测细胞迁移和侵袭能力,Western blot检测HPSE2表达,RT-qPCR检测细胞中miR-15a-5p和HPSE2 mRNA水平。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与人正常宫颈上皮细胞(HcerEpic)比较,宫颈癌细胞Hela、HeRC32和SIHA中miR-15a-5p水平[(3.11 ± 0.32)、(1.51 ± 0.07)、(1.64 ± 0.09)比(1.00 ± 0.05)]升高,而HPSE2 mRNA水平[(0.29 ± 0.04)、(0.45 ± 0.09)、(0.45 ± 0.10)比(1.00 ± 0.05)]降低(P均< 0.05);与对照比较,转染miR-15a-5p inhibitor抑制宫颈癌细胞Hela和SIHA增殖[72 h:(0.85 ± 0.08)比(1.10 ± 0.12)、(0.76 ± 0.12)比(1.04 ± 0.11)]、迁移[(12.67 ± 2.52)%比(23.00 ± 3.00)%、(14.33 ± 2.52)%比(24.67 ± 2.52)%]和侵袭能力[(59.33 ± 11.24)比(127.00 ± 12.49)、(65.67 ± 14.05)比(136.00 ± 15.52)个];与对照比较,miR-15a-5p mimic可以进一步抑制宫颈癌细胞Hela和SIHA中HPSE2蛋白表达[(0.61 ± 0.02)比(1.00 ± 0.03)、(0.34 ± 0.05)比(1.00 ± 0.05)];与miR-15a-5p mimic相比,过表达HPSE2可以增加宫颈癌细胞Hela和SIHA中HPSE2蛋白水平[(2.14 ± 0.13)比(1.00 ± 0.12)、(1.71 ± 0.02)比(1.00 ± 0.03)];过表达HPSE2可以逆转miR-15a-5p mimic的作用,抑制宫颈癌细胞Hela和SIHA增殖[72 h:(0.83 ± 0.10)比(1.44 ± 0.14)、(0.93 ± 0.06)比(1.25 ± 0.10)]、迁移[(34.00 ± 5.57)%比(43.67 ± 10.41)%、(33.00 ± 3.61)%比(41.00 ± 8.00)%]和侵袭能力[(158.00 ± 13.89)比(260.66 ± 15.26)、(150.67 ± 23.54)比(270.00 ± 12.77)个]。

结论

miR-15a-5p通过调控HPSE2促进宫颈癌细胞增殖、迁移和侵袭。

Objective

To investigate the effects of miR-15a-5p targeting heparanase2 (HPSE2) on the proliferation, migration, and invasion of cervical cancer cells.

Methods

Human cervical cancer cell lines (Hela and SIHA) were used as the research objects. miR-15a-5p mimic, miR-15a-5p inhibitor and HPSE2 plasmid were transfected into cells. The cell viability was detected by CCK-8, and the cell migration and invasion ability was detected by scratch test and Transwell assay, respectively. Western blot was used to detect the expression of HPSE2, and RT-qPCR was used to detect the levels of miR-15a-5p and HPSE2 mRNA in cells. Independent sample t-test was used for comparison between two groups, one-way analysis of variance was used for comparison between multiple groups, and LSD-t test was used for pairwise comparison between multiple groups.

Results

Compared with human normal cervical epithelial cells (HcerEpic) , the levels of miR-15a-5p were increased in cervical cancer cells Hela, HeRC32 and SIHA [ (3.11 ± 0.32) , (1.51 ± 0.07) , (1.64 ± 0.09) vs (1.00 ± 0.05) ]. The mRNA level of HPSE2 were decreased [ (0.29 ± 0.04) , (0.45 ± 0.09) , (0.45 ± 0.10) vs (1.00 ± 0.05) ] (all P < 0.05) . Compared with the control, transfection of miR-15a-5p inhibitor inhibited the proliferation [72 h: (0.85 ± 0.08) vs (1.10 ± 0.12) , (0.76 ± 0.12) vs (1.04 ± 0.11) ], migration [ (12.67 ± 2.52) % vs (23.00 ± 3.00) %, (14.33 ± 2.52) % vs (24.67 ± 2.52) %] and invasive ability of cervical cancer cells Hela and SIHA [ (59.33 ± 11.24) vs (127.00 ± 12.49) , (65.67 ± 14.05) vs (136.00 ± 15.52) ]; Compared with the control, miR-15a-5p mimic further inhibited the expression of HPSE2 protein in cervical cancer cells Hela and SIHA [ (0.61 ± 0.02) vs (1.00 ± 0.03) , (0.34 ± 0.05) vs (1.00 ± 0.05) ]. Compared with miR-15a-5p mimic, HPSE2 overexpression increased the protein level of HPSE2 in cervical cancer cells Hela and SIHA [ (2.14 ± 0.13) vs (1.00 ± 0.12) , (1.71 ± 0.02) vs (1.00 ± 0.03) ]. Overexpression of HPSE2 reversed the effect of miR-15a-5p mimic and inhibit the proliferation [72 h: (0.83 ± 0.10) vs (1.44 ± 0.14) , (0.93 ± 0.06) vs (1.25 ± 0.10) ], migration [ (34.00 ± 5.57) % vs (43.67 ± 10.41) %, (33.00 ± 3.61) % vs (41.00 ± 8.00) %] and invasive ability of cervical cancer cells Hela and SIHA [ (158.00 ± 13.89) vs (260.66 ± 15.26) , (150.67 ± 23.54) vs (270.00 ± 12.77) ].

Conclusion

miR-15a-5p promotes the proliferation, migration and invasion of cervical cancer cells by regulating HPSE2.

表1 引物序列信息
图1 miR-15a-5p在宫颈癌中高表达注:a图为UALCAN数据库检测miR-15a-5p在宫颈癌中的表达;b图为UALCAN数据库检测miR-15a-5p对宫颈癌患者生存的影响;c图为qRT-PCR检测宫颈细胞中miR-15a-5p的表达,与HcerEpi比较,aP < 0.001
图2 miR-15a-5p抑制剂抑制宫颈癌细胞增殖能力注:a图为qRT-PCR检测抑制剂在Hela和SIHA细胞中的转染效率,与对照比较,aP < 0.01;b ~ c图为CCK-8检测miR-15a-5p抑制剂对Hela和SIHA细胞增殖的影响,与对照比较,aP < 0.05
图3 倒置显微镜下观察miR-15a-5p抑制剂抑制宫颈癌细胞迁移与侵袭(结晶紫染色,×200)注:左图为划痕实验检测转染miR-15a-5p12h后Hela迁移能力和Transwell实验评估24h后Hela的侵袭能力;右图为划痕实验检测转染miR-15a-5p12h后SIHA迁移能力和Transwell实验评估24h后SIHA的侵袭能力
表2 miR-15a-5p inhibitor对宫颈癌细胞迁移和侵袭的影响( ± s
图4 生物信息学预测网站预测miR-15a-5p与HPSE2靶向结合位点
图5 miR-15a-5p靶向调控HPSE2注:a图为Western blot检测Hela和SIHA细胞中PIK3R1的表达水平;b ~ c图为双荧光素酶报告基因测定Hela和SIHA细胞中miR-15a-5p和HPSE2之间的靶向关系,aP < 0.01
表3 miR-15a-5p mimic对宫颈癌细胞中HPSE2蛋白表达的影响( ± s
图6 HPSE2抑制miR-15a-5p诱导的宫颈癌细胞活性注:a ~ b图为GEPIA和UALCAN数据库分析宫颈癌患者HPSE2表达量;c图为qRT-PCR检测宫颈细胞中HPSE2的表达水平,与HcerEpi比较,aP < 0.01;d图为Western blot检测转染HPSE2质粒进入细胞后HPSE2蛋白表达;e ~ f图为CCK-8检测HPSE2和miR-15a-5p过表达后对Hela和SIHA增殖的影响,与miR-15a-5p mimic比较,aP < 0.01
表4 miR-15a-5p mimic和pHPSE2对宫颈癌细胞中HPSE2蛋白的影响( ± s
图7 HPSE2抑制miR-15a-5p诱导的宫颈癌细胞迁移与侵袭(结晶紫染色,×200)注:左图为划痕实验检测转染miR-15a-5p mimic 12 h后Hela的迁移能力和Transwell实验评估转染miR-15a-5p mimic 24 h后Hela的侵袭能力;右图为划痕实验检测转染miR-15a-5p mimic 12 h后SIHA的迁移能力和Transwell实验评估转染miR-15a-5p mimic 24 h后SIHA的侵袭能力
表5 miR-15a-5p/ HPSE2调控通路对宫颈癌细胞迁移和侵袭的影响( ± s
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
李道娟,师金,靳晶,等.宫颈癌的流行病学趋势[J]. 中华肿瘤杂志, 2021, 43(9): 912-916.
3
Singh M, Jha RP, Shri N, et al. Secular trends in incidence and mortality of cervical cancer in India and its states, 1990-2019:data from the Global Burden of Disease 2019 Study[J]. BMC Cancer, 2022, 22(1):149.
4
Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20):1856-1867.
5
Nowak I, Sarshad AA. Argonaute proteins take center stage in cancers [J]. Cancers (Basel), 2021, 13(4):788.doi: 10.3390/cancers13040788.
6
Lv Q, Wu K, Liu F, et al. Interleukin-17A and heparanase promote angiogenesis and cell proliferation and invasion in cervical cancer[J]. Int J Oncol, 2018, 53(4):1809-1817.
7
Wu B, Liu G, Jin Y, et al. miR-15b-5p promotes growth and metastasis in breast cancer by targeting HPSE2[J]. Front Oncol, 2020, 10:108. doi: 10.3389/fonc.2020.00108.
8
Figy C, Guo A, Fernando VR, et al. Changes in expression of tumor suppressor gene RKIP impact how cancers interact with their complex Environment[J]. Cancers (Basel), 2023, 15(3):958. doi:10.3390/cancers15030958.
9
Nie D, Guo T, Yue M, et al. Research progress on nanoparticles-based CRISPR/Cas9 system for targeted therapy of tumors[J]. Biomolecules, 2022, 12(9): 1239. doi:10.3390/biom12091239.
10
Sharma G, Mo JS, Lamichhane S, et al. MicroRNA 133A regulates cell proliferation, cell migration, and apoptosis in colorectal cancer by suppressing CDH3 expression[J]. J Cancer, 2023, 14(6):881-894.
11
Ni Y, Yang Y, Ran J, et al. miR-15a-5p inhibits metastasis and lipid metabolism by suppressing histone acetylation in lung cancer[J]. Free Radic Biol Med, 2020, 161:150-162.
12
Wang LP, Lin J, Ma XQ, et al. Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis[J]. J Exp Clin Cancer Res, 2021, 40(1):177. doi: 10.1186/s13046-021-01973-z.
13
Chen X, Cao R, Liu H, et al. MicroRNA-15a-5p-targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells[J]. Int J Mol Med, 2020, 46(4): 1301-1310.
14
Marques RM, Focchi GR, Theodoro TR, et al. The immunoexpression of heparanase 2 in normal epithelium, intraepithelial, and invasive squamous neoplasia of the cervix[J]. J Low Genit Tract Dis, 2012, 16(3): 256-262.
15
Zeng C, Ke ZF, Luo WR, et al. Heparanase overexpression participates in tumor growth of cervical cancer in vitro and in vivo[J]. Med Oncol, 2013, 30(1):403. doi: 10.1007/s12032-012-0403-9.
16
Cox TR. The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4):217-238.
17
Nguyen TK, Paone S, Chan E, et al. Heparanase: a novel therapeutic target for the treatment of atherosclerosis[J]. Cells, 2022, 11(20):3198.doi: 10.3390/cells11203198.
18
Soloveva M, Solovev M, Nikulina E, et al. Loss of heterozygosity in the circulating tumor DNA and CD138+ bone marrow cells in multiple myeloma[J]. Genes (Basel), 2023, 14(2):351. doi: 10.3390/genes14020351.
19
Mckenzie E, Tyson K, Stamps A, et al. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member[J]. Biochem Biophys Res Commun, 2000, 276(3):1170-1177.
20
Zhang H, Xu C, Shi C, et al. Hypermethylation of heparanase 2 promotes colorectal cancer proliferation and is associated with poor prognosis[J]. J Transl Med, 2021, 19(1):98. doi: 10.1186/s12967-021-02770-0.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 孙笑非, 顾依群, 王爱春, 王荔, 孟凡凡, 王军, 卢利娟. 细胞块p16/Ki-67双染对子宫颈炎患者宫颈上皮内瘤变的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 418-425.
[3] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[4] 刘福军, Asma Aladoofi, 付振华, 张琦玲, 杨蕾, 涂春华, 张智, 蔡丽萍. 机器人手术与传统开腹术治疗早期宫颈癌的效果分析[J]. 中华腔镜外科杂志(电子版), 2023, 16(05): 293-298.
[5] 王楠, 孟元光, 马冰, 张鹏, 杨雯, 顾成磊, 闫志风, 翟青枝, 李明霞, 李震, 王铭洋, 李立安. 机器人手术在中央型复发宫颈癌的应用[J]. 中华腔镜外科杂志(电子版), 2023, 16(05): 278-282.
[6] 雷翠蓉, 马丽芳, 邹冬玲. 微创肿大淋巴结切除手术技巧[J]. 中华腔镜外科杂志(电子版), 2023, 16(05): 299-303.
[7] 王莹莹, 王卡娜, 陈思敬, 王娜, 郑莹. 腹腔镜宫颈广泛切除术治疗特殊类型宫颈黏液性癌[J]. 中华腔镜外科杂志(电子版), 2022, 15(06): 372-375.
[8] 周灿坤, 李庆东, 江卓飞, 肇丽杰, 郑玉华, 柳晓春, 谢庆煌, 黄晓斌. 阴式广泛联合经阴道内镜腹膜外淋巴结切除术[J]. 中华腔镜外科杂志(电子版), 2022, 15(06): 368-371.
[9] 刘云玥, 范文生, 顾成磊, 马鑫, 刘洪一, 孟元光. 达芬奇机器人MDT模式全盆腔廓清术治疗晚期宫颈癌一例[J]. 中华腔镜外科杂志(电子版), 2022, 15(04): 249-251.
[10] 范家铭, 杨秭莹, 冯振辉, 陈一欢, 王雨桐, 沈振亚. 影响扩张型心肌病干细胞移植疗效的差异miRNA表达分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 288-298.
[11] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[12] 冯佳佳, 刘丹, 张广炜, 金丽霞. microRNA与脑动脉粥样硬化斑块破裂的研究新进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 601-604.
[13] 李锡勇, 杨溯, 张雄杰, 李松风, 韩鹏飞. microRNA与老年性骨关节炎[J]. 中华老年病研究电子杂志, 2022, 09(03): 51-55.
[14] 殷雨来, 李雪, 何晓阳, 张晓宇. 体质量指数和4种女性特征性癌症的因果关系:一项两样本孟德尔随机化研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 253-260.
[15] 马晓瑭, 李婵娣, 李嘉辉, 许小冰. 高表达microRNA-17的内皮祖细胞外泌体对糖尿病缺血性脑卒中的治疗作用[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 263-274.
阅读次数
全文


摘要